Inefficiency in Agricultural Production: Do Information Frictions Matter? *

This version: March 16, 2025. Click here for the latest version.

Aranya Chakraborty Digvijay Singh Negi Rahul Rao

Abstract

Does information and communication technology (ICT) based provision of agricultural extension services help improve agricultural productivity in poor or developing countries? We answer this question in the case of rice production in rural Bangladesh. We exploit the spatiotemporal variation in the availability of village-level phone services and the temporal variation in the timing of an ICT-based intervention to identify the differential impact by input use, network centrality, and geographic proximity. We observe that, in the villages with access to phone service, there is a 50 percent reduction in plot-level inefficiency after the intervention, driven by plots that used rainfed water for cultivation. We provide evidence suggesting that these effects are due to increased input use by the farmers using rainfed farming. Our results also document that the intervention benefits geographically remote farmers differentially more, whose information needs are otherwise unfulfilled by traditional extension services. However, the diffusion of information via networks remains relevant as we document significant cross-community spillovers through geographic ties.

IEL Codes: D83, O13, Q16.

Keywords: Agriculture, Inefficiency, Extension, ICT, Networks.

^{*}Chakraborty: Amrut Mody School of Management, Ahmedabad University, India. Email: aranya.chakraborty@ahduni.edu.in. Negi: Department of Economics, Ashoka University, India. Email: digvijay.negi@ashoka.edu.in. Rao: Amrut Mody School of Management, Ahmedabad University, India. Email: rahul.rao@ahduni.edu.in. (corresponding author). We would like to thank Sonia Laszlo and Aditya Shrinivas for their very useful comments and suggestions. We would also like to extend our gratitude to the participants at the Food and Agriculture Research Discussion Forum Meeting, the 18th Annual Conference on Economic Growth and Development at ISI-Delhi, and the 8th Annual Research and Policy Workshop organized by the Centre for Research on the Economics of Climate, Food, Energy and Environment (CECFEE) for their generous feedback. All views expressed in this work are our own.

1 Introduction

A large and influential body of literature attributes differences in per-capita incomes between rich and poor countries to differences in their agricultural productivity (Gollin et al., 2002, 2004, 2007; Restuccia et al., 2008). Recent research shows that the inefficiency in agricultural production in poor countries is primarily due to non-geographical factors (Adamopoulos and Restuccia, 2022). One of the main non-geographical factors that explain productivity gaps is the lack of adoption of new technology and the use of traditional agricultural practices (Foster and Rosenzweig, 2010; Suri, 2011). Evidence shows that information inefficiencies can partly explain why farmers may not adopt new technology or may not use it effectively (Magruder, 2018). Access to expert advice and extension services can play an important role in serving information needs and raising awareness about modern practices among farmers (Anderson and Feder, 2004; Takahashi et al., 2019). However, in-person agricultural extension services have limited outreach and are expensive to run and operate (Fabregas et al., 2019b; Cole and Fernando, 2020).

In this paper, we study the role of Information and Communication Technology (ICT) in reducing inefficiency in agricultural production. In particular, we look at the case of rice production in rural Bangladesh. Rice is a staple crop central to Bangladesh's overall economy and is cultivated throughout the country two to three times a year across all three agricultural seasons. Although Bangladesh's geography is amenable to rice cultivation, its farm productivity remains low compared to other major rice producers (Asian Development Bank, 2023). This low productivity, combined with the dominance of small-scale farming, threatens the food and livelihood security of the large agriculture-dependent rural population of the country (Asian Development Bank, 2023; Sarker et al., 2021). Despite the need and potential benefits of traditional extension services in this regard, the overall reach and effectiveness of such extension efforts remain low (Alam and Kijima, 2024).

Taking advantage of the growth of mobile phone technology in rural Bangladesh, the government launched *Krishi Call Centers* (Agricultural Call Centers) in 2014, wherein farmers could call and consult experts on various aspects of agriculture (Huber and Davis, 2017). The objective of the intervention was to provide timely, need-based, and farmer-specific services where farmers could consult experts at any stage of crop pro-

¹Evidence suggests that policies and institutions in poorer countries play a critical role in restricting economic choices made in the agriculture sector that misallocate resources across farms (Adamopoulos and Restuccia, 2014). Land redistribution reforms, tenancy reforms, progressive land taxes, and input subsidies to small landholders are examples of policies that distort the farm-size distribution in poor and developing countries (Adamopoulos and Restuccia, 2014). Some recent papers that have studied misallocation due to distortions in land market institutions are (Restuccia and Santaeulalia-Llopis, 2017; Chen, 2017; Gottlieb and Grobovšek, 2019; Adamopoulos and Restuccia, 2020).

²Informational inefficiency is even more detrimental to agricultural outcomes if climate change makes future states of the world more unpredictable (Zilberman et al., 2012).

duction. Using unique nationally representative household-level panel data, we study the effectiveness of this intervention in reducing agricultural inefficiency in Bangladesh. Our main dependent variable of interest is a plot-level measure of *inefficiency* in rice production, constructed as the gap between the actual yield and the potential yield corresponding to the geographical location of the plot and the reported input use.

Our results exploit the spatiotemporal variation in access to phone services and the temporal variation in the timing of the intervention to identify the differential impact by input use, network centrality, and geographic proximity. We observe that, in the villages with access to phone service, there is a 50 percent reduction in plot-level inefficiency after the intervention. We show that this impact is driven by those plots that used rainfed water supply for cultivation, and we find no statistically significant impact of ACCI on the plots that used high-level inputs on their plots as proxied by tractor usage. We present the robustness of our approach in two ways: first, by generating a placebo intervention in the period prior to the actual intervention, and second, by randomly shuffling input usage across households. Our results remain robust to both these variations. Our results remain robust to various other robustness checks that we document in the appendices.

In terms of the mechanism of these results, we find that, in villages with telephone service, farmers using rainfed water supply intensified the input use per hectare after the intervention. This included higher usage of both fertilizer and pesticide along with an increase in the amount of family labor used on farms post-ACCI. On the other hand, we find that farmers using tractors reduced their usage of both fertilizer and pesticide after the intervention though they increased the expenses on purchase of seeds.

We also investigate the role of social networks, to the extent spanned by geographical proximity, in moderating the impact of ACCI. In the villages with phone service, compared to better-connected households, the inefficiency of geographically remote households differentially decreased after the intervention, and at the same time, their actual yields increased. This impact is, however, not driven by any change in input use in terms of rainfed water supply and tractor usage. It suggests that the differential reduction in inefficiency is on account of the efficient use of existing inputs, not due to any changes in either cultivation input. In terms of the spillover effects of ACCI, we document that there were large cross-community spillovers. Using a dyadic regression framework, we find that the inefficiency of a household gets reduced differentially more, compared to a far-off household, if it is closer to another household that happened to be a part of the community that received the intervention. It indicates that the spillover effects get stronger with a decrease in the geographical distance from a community that benefited from the intervention.

Our paper makes three contributions to the existing literature. First, we contribute to the literature that studies the effectiveness of Information and Communication

Technology (ICT) based interventions in agriculture. A large body of literature has already studied the role of ICT-based interventions in agriculture (see Aker (2011) and Aker et al. (2016) for an in-depth review). The findings, however, remain mixed. While some find positive productivity impacts of mobile phone-based interventions (Casaburi et al., 2014; Gupta et al., 2024), others find none (Fafchamps and Minten, 2012; Cole and Fernando, 2020). In this paper, we investigate the effectiveness of a government-sponsored large-scale mobile phone-based intervention in Bangladesh. While similar studies exist in India (e.g., Gupta et al., 2024), we are the first to provide evidence for this type of intervention in Bangladesh. As we argue later, ex-ante, we expect the effectiveness of such intervention to be significantly different in Bangladesh, as compared to India, due to Bangladesh being more linguistically homogeneous than India.

Our second contribution is highlighting the importance of heterogeneity in geography in evaluating the impact of agricultural interventions. Suri (2011) documents the importance of heterogeneous costs in the adoption of new technologies. Such heterogeneity can also be attributed to differences in micro-geography. Given the heterogeneity in local geography and natural conditions, we argue that the actual yield may not be the right measure to evaluate the impact of such interventions. We construct a novel inefficiency measure that helps us control for both geographical endowments and actual input use. The measure builds on the agricultural inefficiency and misallocation literature. This literature has made novel efforts to study the role of geography and natural endowments as important determinants of agricultural productivity and economic growth (Henderson et al., 2001; Adamopoulos and Restuccia, 2022).³ Taking a cue from this misallocation literature, we construct a plot-level measure of inefficiency in rice production as the gap between the actual yield and the potential yield corresponding to the geographical location of the plot and the reported input use. The advantage of using this measure as the dependent variable as compared to actual yield is twofold. First, it captures and controls for the effect of variation in geographical endowments across plots. Second, it also differentiates between two agricultural plots that may be endowed with the same geographical factors but using different material inputs. To the best of our knowledge, our study is the first to use this measure for plot-level analysis of agricultural production. It is interesting to note that although we find a significant

³Using the high-resolution gridded micro-geography data made available by the Food and Agricultural Organization's (FAO) Global Agro-Ecological Zones (GAEZ) project (that we also use for our analysis), Adamopoulos and Restuccia (2022) perform a cross-country analysis and find that there are virtually no aggregate differences in the quality of land between rich and poor countries. They find that the agricultural yield gap between rich and poor countries almost disappears from 214 percent to 5 percent if the crops were grown at the potential yield of their respective farmland. They use the potential yield corresponding to rainfed water supply and low input level usage for all countries. The top 10 percent and bottom 10 percent countries make up the rich and poor groups of countries, respectively. This suggests that the higher agricultural inefficiency of poor countries is primarily due to non-geographical factors, which hinder farmers from achieving the full potential of their farmlands' natural endowments.

reduction of inefficiency post-intervention, we do not get any statistically significant results when using actual yield as the dependent variable. Additionally, our estimates on inefficiency reduction are larger than those for the impact of ICT-enabled extension services on actual yield documented in the literature.

Finally, this paper also contributes to the literature studying the role of remoteness and social networks in agricultural productivity. The role of social ties in amplifying the effectiveness of extension efforts is well recognized in the literature (Banerjee et al., 2013; BenYishay and Mobarak, 2018; Breza et al., 2019; Cheng, 2021; Beaman et al., 2021). The literature also argues for ease of communication between agents who live close to each other, making the social ties more likely between geographically proximate agents (Helsley and Zenou, 2014; Kim et al., 2023). This highlights the role of geographic centrality in economic development, also documented in the literature elsewhere (Donaldson and Hornbeck, 2016; Aggarwal, 2018; Shamdasani, 2021). We argue that the advantage of ICT-based interventions is the reduced need for being geographically central in terms of access to information. In this regard, we provide evidence that ACCI differentially benefits geographically remote agents more, whose information needs are otherwise unfulfilled by traditional extension services. However, the diffusion of information via networks remains relevant as we document significant cross-community spillover effects through geographic ties.

The rest of this paper is organized as follows. Section 2 provides the contextual background of our study. Section 3 discusses the empirical design of our study, which includes the description of data sources, empirical strategy, and descriptive statistics. We present our results in sections 4 and 5. Finally, section 6 summarizes our main findings and concludes.

2 Background

2.1 The Agricultural Call Center Intervention

Despite rapid economic growth in recent decades, Bangladesh remains a largely rural country. More than two-thirds of the population resides in rural areas and is primarily engaged in agricultural activities (Asian Development Bank, 2023). Agriculture accounts for 40 percent of the overall employment in Bangladesh (Asian Development Bank, 2023). Rice occupies the dominant place in Bangladesh's agriculture and cultivated almost the entire year across all three agricultural seasons: *Aman*, or the monsoon season; *Boro*, or the winter season; and *Aus*, the intermediated summer season. It is also the staple crop, accounting for around 80 percent of the cultivated area (Asian Development Bank, 2023).

While Bangladesh is the third largest producer of rice globally, in comparison to other

major rice-producing countries, rice productivity in the country is relatively low at around 4.9 tonnes per hectare (See Figure 1 for a comparison with other major rice-producing countries). Given the centrality of rice in Bangladesh's rural economy and the dominance of small-scale farming, this low rice productivity threatens the food security and livelihoods of the large agriculture-dependent rural population in the country. Smallholder rice producers face structural limitations in access to information about the availability of new modern seed varieties and agrochemicals (Sarker et al., 2021). Bangladeshi farmers still rely on traditional farming practices. The use of modern agricultural practices such as soil testing and the use of new varieties, fertilizers, and pesticides remains low (Sarker et al., 2021).

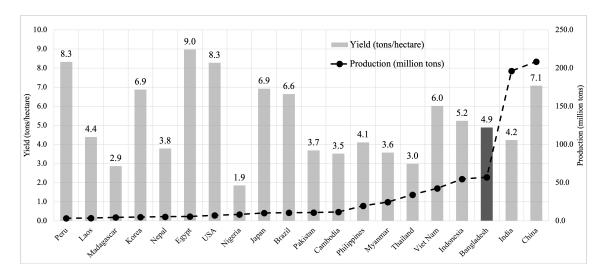


Figure 1: Rice yield of top 20 rice producers

Notes: Figure plots the rice yield (bars) and total rice production (dashed line) for the top 20 rice producers globally. Based on data from FAOSTAT obtained from https://www.fao.org/faostat/en/home.

Like other developing countries around the world, Bangladesh has also seen a dramatic increase in mobile phone coverage in recent decades (Figure 2). From negligible cellular phone coverage in the early 2000s, almost all households in Bangladesh reported having access to a mobile phone in 2022 (Bangladesh Bureau of Statistics, 2022). The mobile revolution started in the late 1990s with the launch of the village phone program called GrameenPhone (Bayes, 2001). Recognizing the lack of telecommunication infrastructure as a major impediment to economic growth and development, the internationally recognized microlending institution, Grameen Bank of Bangladesh, introduced mobile phone services in some rural areas (Bayes, 2001). The GrameenPhone rapidly expanded its network and is now the largest mobile phone operator in the country.

Taking advantage of the widespread dissemination of mobile phone technology in rural Bangladesh, the government-run Agriculture Information Service (AIS) launched a mobile phone-based agricultural helpline in June 2014 (Huber and Davis, 2017; De-

partment of Agricultural Extension, 2018). The AIS established *Krishi Call Centers* (Agricultural Call Centers), where farmers, at a nominal cost of 25 paisa/minute, call and consult experts on various aspects of agriculture (Huber and Davis, 2017). The program was successful and reached over thirty thousand households within a year of its launch in 2014 (Huber and Davis, 2017). Farmers need for expert advice and the deep penetration of mobile services is reflected in the fact that around 1 lakh solutions/advice were disbursed to farmers via the Krishi Call Centers as of August 2018. Farmers would generally seek information on modern agricultural inputs, including advice on diseases and pest management on the farm.⁴

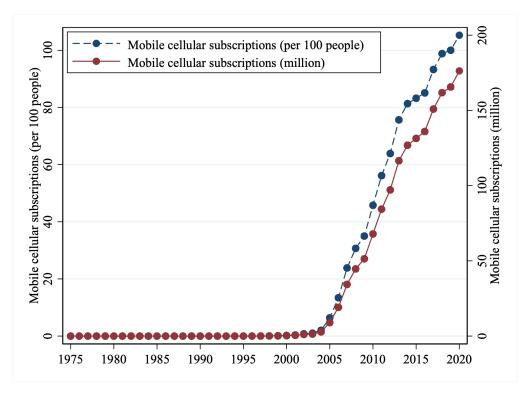


Figure 2: Trends in mobile phone coverage in Bangladesh

Notes: Figure plots the trends in overall and per 100 persons mobile phone subscriptions in Bangladesh, as per the data obtained from the World Bank World Development Indicators database.

2.2 Potential for Telecommunication Extension Services

The inefficiency in agricultural production plays a huge role in keeping countries' agricultural productivity lower and, hence, their incomes low. Adamopoulos and Restuccia (2022) find that the rich-poor agricultural yield gap can be virtually closed from 214 percent to 5 percent if countries produce current crops according to potential yields.⁵ The existing literature documents the potential positive impact of the adoption of modern

⁴As reported on the official website of the Agriculture Information Service (AIS) Bangladesh. See, http://www.ais.gov.bd/site/page/e24c72ff-aed9-4497-a4d3-87ef07bc33c6/-, for details.

⁵Rich and poor countries refer to top and bottom 10 percent countries by income, respectively.

practices on agricultural productivity (Bustos et al., 2016; Takahashi et al., 2019; Suri and Udry, 2022). Given the vulnerability of the agricultural sector to climate conditions and weather shocks (Gallic and Vermandel, 2020), the adoption of sustainable agricultural practices is also documented to be essential for adaptation to increasingly volatile weather due to climate change (Zilberman et al., 2012). The adoption can also lead to efficiency gains in production (Bustos et al., 2016; Bold et al., 2017; Foster and Rosenzweig, 2010), leading to a decrease in agricultural land misallocation (Adamopoulos and Restuccia, 2022).

Agricultural production is a complex process and requires farmers to make several decisions during different stages of crop production (Aker and Ksoll, 2016). These decisions are dynamic in the sense that the entire input mix must be adjusted if the farmers' assessment differs from the realized conditions (Aker et al., 2016). Farmers, therefore, would have different information needs based on the realization of the state of the world at different stages of crop production. Although farmers may rely on experience and social connections to serve such needs, the quality and relevance of such information would depend on the information set of other farmers in the village (Bandiera and Rasul, 2006; Deichmann et al., 2016). Agricultural extension can play a critical role in updating the information set of farmers in the village (Anderson and Feder, 2004; Norton and Alwang, 2020).

Extension services can be critical in serving information needs and raising awareness about modern practices among farmers (Anderson and Feder, 2004). Even if farmers are using modern inputs such as fertilizers and pesticides, evidence shows that farmers can make errors in the timing and usage of such inputs (Islam and Beg, 2021). Extension agents can help farmers guide in the correct usage of modern inputs (Anderson and Feder, 2007; Sheahan and Barrett, 2017; Islam and Beg, 2021). However, in-person agricultural extension services have limited outreach and are expensive to run and operate (Fabregas et al., 2019b). In addition, in-person extension services are primarily operated by the public sector and are fraught with inefficiencies (Aker, 2011; Cole and Fernando, 2020; Alam and Kijima, 2024).

The widespread access to mobile phones and telecommunication services provides a cheap and effective way to reach distant farmers (Magruder, 2018; Fabregas et al., 2019b). Although traditional in-person extension may not be available to all farmers at all times, mobile phone-based agricultural extension programs can provide farmers with timely and need-specific information services at different stages of crop production (Aker, 2011; Duncombe, 2016). Experimental evidence on the effects of mobile extension services on modern technology adoption and agricultural outcomes has been encouraging (Casaburi et al., 2014; Aker and Ksoll, 2016; Fu and Akter, 2016; Cole and Fernando, 2020; Campenhout, 2021). In addition, mobile phones also allow for greater information exchange through social networks (Norton and Alwang, 2020).

The importance of existing social ties in the success of agricultural extension interventions is well documented (Breza et al., 2019; Cheng, 2021). Learning from social ties was even more effective than learning from extension agents (Krishnan and Patnam, 2013). The literature documents a complementarity between information delivery through extension services and the diffusion of the same via existing social networks (BenYishay and Mobarak, 2018). Studies have shown that extension agents can leverage this complementarity to design cost-effective interventions to deliver information to a broader set of agents with a limited time and budget (Akbarpour et al., 2020; Beaman et al., 2021; Banerjee et al., 2023). However, the literature also documents that the effectiveness of such interventions in reaching a population with heterogeneous information needs may be limited (Chakraborty, 2024). This is particularly true if the cost and benefits of adopting some practices differ from one agent to another (as discussed in Suri (2011)) or the speed of learning relies on population heterogeneity (as documented in Munshi (2004)). The results highlight the importance of investigating the possible heterogeneity in social learning in the amplification of any extension efforts.

In light of the evidence from the literature discussed above, there is thus a need to assess the ground-level impacts of large-scale ICT-based extension programs like Bangladesh's Agricultural Call Center Intervention (ACCI). Our study aims to serve this need by investigating the role of information provided through ACCI in effectively using agricultural inputs to reduce inefficiency in production. Our analysis focuses on understanding the heterogeneity in the effect of access to ACCI by input use. In addition, our analysis also strives to understand the role of social networks in amplifying the impact of ICT-based extension efforts by facilitating the diffusion of information obtained through such extension services. For the latter, we investigate the potential for ACCI to reach agents from geographically remote areas and the potential amplification of the program's impacts through social spillovers.

While there are studies that document the impact of a similar government-sponsored large-scale mobile phone-based extension program in India, none exists for Bangladesh.⁶ An important feature of the Indian program is that the language in which agricultural advice was offered varied according to the official language of each Indian state. Gupta et al. (2024) document that this can lead to a barrier if there is a mismatch between the official language and the languages spoken and understood by sub-populations. Unlike India, this additional friction does not exist in Bangladesh as the advice was given in *Bengali*, the official language of Bangladesh, which is spoken and understood by almost the entire population of the country.

⁶See, for example, Gupta et al. (2024) for the evidence on the Indian mobile-phone-based extension program.

3 Empirical Design

3.1 The Bangladesh Integrated Household Survey (BIHS)

Our primary data comes from the Bangladesh Integrated Household Surveys (BIHS).⁷ The BIHS, funded and implemented by the United States Agency for International Development (USAID) and the International Food Policy Research Institute (IFPRI), collects detailed information on all aspects of the social and economic lives of households in rural Bangladesh. The BIHS is based on a multi-stage stratified sampling procedure and is nationally representative as well as representative of the seven administrative divisions of rural Bangladesh.⁸ The surveys were conducted in three rounds: 2011-2012, 2015, and 2018-2019. The first two rounds covered 6,500 households across 325 Primary Sampling Units. The third round covered the same number of PSUs and could resample 5,604 of the original households.

A unique feature of the BIHS is the access to the geocoded location of surveyed households. The harmonized survey data provides the latitude and longitude of the sampled households with a 2-kilometer offset to maintain anonymity. This information is critical for us both from the point of view of constructing inefficiency measures and the empirical strategy.

Our primary focus is the roaster of all land and waterbodies owned by the households and the agricultural module of the survey. The roaster provides us with information on all the agricultural plots operated by the household, including their size, operational status, and distance from the place of residence. The agricultural module collects plot-level information on the cultivated crops, planted areas, variety, and types. It also collects detailed information on inputs used and the harvested quantity. Out of the total plots cultivated over the three rounds, households report cultivating paddy in 71 percent of the plots. Given that paddy is a major staple crop of Bangladesh and the dominant crop in BIHS, we focus only on paddy.

The BIHS also provides detailed information on households' access to agricultural extension services and various input subsidies provided by the government of Bangladesh. The extension module collects responses on extension agent visits, the type of advice given for different inputs, and whether it was useful. The module also records whether the household received a subsidy on inputs from the government.

Along with information on cultivation and access to extension services, we use data from modules on household composition, access to various facilities, housing conditions, assets, food and non-food consumption, non-farm enterprises, loans and borrowings,

⁷These surveys are publicly available and can be found at https://dataverse.harvard.edu/dataverse/IFPRI/?q=Bangladesh+Integrated+Household+Survey

⁸The seven administrative divisions are Barisal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, and Sylhet.

and self-reported economic shocks.

Another attractive feature of the BIHS is the community module of the survey, which collects information on access to facilities for selected villages. The community module collects data on the availability of facilities such as roads, banks, police stations, and mobile and telephone networks, along with the year in which it was established. Our empirical framework will particularly focus on the timing of arrival of telephone and mobile services in the village.

3.2 Empirical Strategy

3.2.1 Identifying the Impact of the Intervention on Agricultural Outcomes

To identify the effect of information on agricultural outcomes, we first examine the impact of the Agricultural Call Center Intervention (ACCI) on outcomes, post-intervention, using the following difference-in-differences specification:

Outcome_{ijcdpst} =
$$a_0 + a_1$$
Phone Service_{cdt} + a_2 Phone Service_{cdt} × Post ACCI_t
+ $a_3X_{ijcdt} + \sigma_i + \delta_p + \phi_s + \lambda_t + \psi_d \times \lambda_t + \epsilon_{ijcdpst}$, (1)

where $Outcome_{ijcdpst}$ is the outcome for agricultural plot j, cultivated by household i from community c of division d at year t for season s and crop-type p. Phone Service_{cdt} is a dummy that measures whether the community c of division d reported having phone service at year t and Post $ACCI_t$ is the time dummy capturing whether the survey year t is post introduction of the Agricultural Call Center Intervention. The latter is omitted in its level as the regression includes year fixed-effects λ_t . The specification also includes σ_i , δ_p , and ϕ_s , as household, crop-type, season fixed-effects, respectively. It also includes the interaction of division fixed effect ψ_d with year fixed effect λ_t to control for time-varying characteristics at the division level. X_{ijcdt} are some time-variant observables, including weather. Finally, ε_{ijpst} is the random error in the regression.

3.2.2 Exploring the Heterogeneity in the Impact by Input Usage

The difference-in-differences specification above helps us examine the effect of the ACCI on agricultural outcomes. Furthermore, in order to examine whether the effect of ACCI varies differentially by input use, we exploit the spatiotemporal variation in the plot-level input usage of the households, in addition to the spatiotemporal variation in community-level exposure to phone services and the temporal variation in the introduction of the ACCI. In particular, we use the following triple-differences

⁹Complete data for community facilities is available only for the second and third rounds of the BIHS. We use the community survey module for only the third round.

specification:

Outcome_{ijcdpst} =
$$\alpha_0 + \alpha_1$$
Phone Service_{cdt} + α_2 Input_{ijcdt} + α_3 Phone Service_{cdt} × Input_{ijcdt}
+ α_4 Phone Service_{cdt} × Post ACCI_t + α_5 Input_{ijcdt} × Post ACCI_t
+ α_6 Phone Service_{cdt} × Input_{ijcdt} × Post ACCI_t + $\alpha_7 X_{ijcdt}$
+ $\sigma_i + \delta_p + \phi_s + \lambda_t + \psi_d \times \lambda_t + \epsilon'_{ijcdpst'}$ (2)

where $Input_{ijcdt}$ are dummies capturing whether the household i from community c of division d use different inputs on their plot j at time t. Our coefficients of interest are α_6 , which capture the differential effect of ACCI post-intervention by different input use. The sign of the coefficients depends on whether the intervention was successful in communicating the effective usage of the input.

As time-varying weather conditions serve as important inputs in the agricultural production process, we control for these in the above regression specifications. We extract weather variables from the TerraClimate dataset. TerraClimate provides global gridded monthly rainfall and temperature data from 1958 to 2020 at approximately 4-kilometer spatial resolution. We use these global surfaces and the geo-location of BIHS sample clusters to calculate total seasonal rainfall and temperature for the three survey years.

3.3 Main Outcome Variable: Agricultural Inefficiency

Rice productivity per unit of land is a natural outcome but may not serve as the most appropriate metric for our analysis. Productivity variations across households may be influenced not only by differences in natural endowments but also by the input mix employed by farmers. This implies that farmers working under poor soil conditions might achieve higher yields by utilizing an intensive input mix, while those with better natural conditions might perform poorly due to inadequate inputs. To make such comparisons meaningful, it is essential to consider a counterfactual *potential* yield based on combinations of natural endowments and input mixes. We find such natural endowment based estimates of potential yields in the Global Agro-Ecological Zones (GAEZ) dataset.

The GAEZ dataset is jointly prepared by the Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA).¹¹ This dataset covers the entire land surface area of earth by dividing it into equal-sized grid cells at 5 arc-minute resolution.¹² It reports the *average* potential yield

¹⁰Publicly available from https://www.climatologylab.org/terraclimate.html.

¹¹Publicly available at https://gaez.fao.org/.

¹²The area of these cells map differently into sq-km. at different latitudes. For context, the average size

for a set of crops in each grid cell which is the maximum attainable yield given the natural inputs/endowments of the grid cell and the type of cultivation inputs assumed for growing the crop. 13 To calculate the potential yield, a crop-specific state-of-the-art agronomic model is fed with the natural inputs, which include the standardized soil, climate, and terrain conditions corresponding to the specific grid cell, and the type of cultivation inputs, which include the water supply and the level of complementary inputs usage. 14 Water supply and complementary input levels are of two types - rainfed and irrigated conditions for water supply, and low and high levels of complementary inputs usage. Low-level inputs correspond to traditional subsistence-based farm management. There is no usage of chemical fertilizers or pesticides, and there is no farm mechanization since all stages of production are labor-driven. Under high-level inputs, the farming system is market-oriented, i.e., there is usage of high-yielding variety seeds, fertilizers, pesticides, and machinery are used wherever possible. The labor intensity is low and nutrient application is optimal. ¹⁵ As a result, we know the potential yield of a set of crops for four input combinations – rainfed-low, rainfed-high, irrigated-low and irrigated-high – in each grid cell. 16 These four potential yield estimates establish a production possibility frontier based on natural endowments and the actual input mix, against which actual productivity can be compared.

As our main outcome variable, we construct a measure of the gap between actual and potential yield. To construct this measure, we use the household's location information (in latitude and longitude) and plot-level input usage from the BIHS dataset and combine it with the potential yield of the plot. Using the GAEZ data, we first associate a household's location with a GAEZ plot and then derive the potential yield for different combinations of input use. Given the actual input use at each plot, we then compute a measure of potential yield for that plot. Comparing this potential yield with the actual yield, we construct our measure of inefficiency as the percentage difference between

of a grid cell is around 81 sq-km. at the equator, while it is around 78 sq-km. in Bangladesh.

¹³GAEZ dataset reports potential yield at a 5 arc-minutes resolution cell by taking average of the potential yields over 100 sub-cells at 30 arc-seconds resolution.

¹⁴Soil quality includes its depth, fertility, drainage, texture, and chemical composition. Climate conditions include temperature, sunshine hours, precipitation, humidity, and wind speed. And, terrain and topography include elevation and slope of the land surface (Adamopoulos and Restuccia, 2022).

¹⁵Though the GAEZ (v4) dataset provides potential yields for only two input levels - low and high, there is also a third level mentioned in the model documentation on its website. This is the intermediate level of inputs for which the potential yield information was also provided in the earlier versions of the GAEZ dataset. Under the intermediate level, the farming system is only partially market-oriented, with some focus still on subsistence production. Here, the farmers use some fertilizers, pesticides, mechanization (some preliminary hand/animal/machine tools), and adopt some conservation measures of weed control in contrast to minimum measures under low input level. We club together the low and intermediate levels of inputs, under the low category. So that we can segregate all input choices under only two levels - low and high.

¹⁶To know more about this dataset, one can refer to the detailed discussion done in Adamopoulos and Restuccia (2022).

actual and potential yield as given below:

$$Inefficiency_{ijcdst} = \frac{Potential\ Yield_{ijcdst} - Actual\ Yield_{ijcdst}}{Actual\ Yield_{ijcdst}} \times 100 \tag{3}$$

where both potential and actual yields vary spatially and over seasons and years. The potential yield for growing the same crop could vary for two reasons. First, with the same type of cultivation inputs, it could vary between different grid cells due to the differences in their geographical attributes. Second, potential yields can also be different for the agricultural plots that lie within the same GAEZ grid cell but use different combinations of cultivation inputs. Different cultivation inputs lead to different rates of various biophysical growth processes for a given crop, resulting in different maximum attainable yields. As a result, our measure of *Inefficiency* varies depending on the geographical location of agricultural plots and the actual input choices made by the farmers.

We consider two critical inputs for constructing plot-level potential yield. First is the type of water supply used on the agricultural plot. This can be of two types rainfed and irrigated. The second is the use of agricultural machinery, specifically tractors, on the farm. We consider the usage of the tractor as a proxy for high-level input usage on the plot. The reason is two-fold. First, a tractor is an expensive agricultural machinery that can be used at any or all stages of rice production - cultivating soil, planting rice seedlings, spraying, which enhances irrigation efficiency by reducing water and fertilizers usage, harvesting, digging out rice straw, and lastly transporting the produce to the market. The ownership or renting of the tractor is justified only when the production is not only meant for subsistence purposes. ¹⁷ Second, we observe that almost all plots in our data used fertilizers (98.6 percent) or pesticides (86.66 percent), while only a few (8.35 percent) used tractors. Many plots also used a powertiller (88.84 percent), which is a handheld machine used for purposes similar to those served by a tractor, but not all of them, and that too with lesser efficiency. ¹⁸

Figure 3 shows the distribution of our inefficiency measure under different *hypothetical* input choices. It demonstrates how the same set of agricultural plots can face different inefficiency levels due to differences in their corresponding input choices. The distribution of realized inefficiency corresponds to the actual input choices made by the farmers. As evident in the figure, both the mean and spread of inefficiency are higher in case of high inputs usage. Our choice of tractor-usage seems to be a more conservative assumption to proxy high input scenario as the realized inefficiency distribution is

¹⁷Price of a tractor ranged from 1 million to 2.2 million Takas in 2018, whereas the average income per capita was only 0.13 million Takas then. *Sources:* https://www.thedailystar.net/business/news/tractor-sales-drop-1835503 and Bangladesh Bureau of Statistics (http://nsds.bbs.gov.bd/en).

¹⁸Percentage of plots that used a powertiller by survey year - 88.93% in 2015, and 88.75% in 2018.

closer to that of low inputs scenarios with a mean of 15 and a standard deviation of 167 percentage points, respectively.

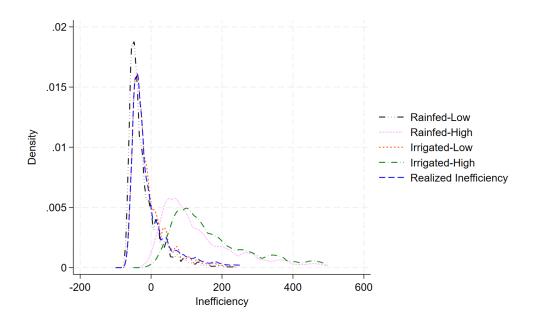


Figure 3: Variation in Inefficiency Densities

Notes: (1) The four possibilities for plot-level inefficiency correspond to the four possible input combinations compared with the actual yield, assuming same inputs for all plots. Whereas, the realized inefficiency corresponds to the comparison of actual yield with the potential yield as per the actual inputs usage on the plot. (2) The realized inefficiency distribution is a conservative estimate given our choice of "tractor-usage" as the proxy for high level of complementary inputs usage. As evident in the figure, both its mean and spread would have been higher if more plots were classified as using "high" inputs. The mean and standard deviation for realized inefficiency are 15 and 167 percentage points, respectively. The mean for "low" inputs scenarios is -13 and 4 percentage points, whereas that for "high" inputs cases, it is 182 and 238 percentage points for rainfed and irrigated water supply, respectively. While, the standard deviation for "low" inputs scenarios is 111 and 132 percentage points, whereas that for "high" inputs cases, it is 359 and 430 percentage points for rainfed and irrigated water supply, respectively.

There are many plots where the actual yield is greater than the potential yield, resulting in a negative inefficiency measure. First, this could be because the farmer might be compensating for poorer natural endowments or lack of irrigation infrastructure or mechanization by overusing other inputs, like fertilizer and pesticides. This might lead to higher productivity now at the cost of lower productivity in the future. Evidence from the literature does suggest Bangladeshi farmers overusing chemical fertilizers (Islam and Beg, 2021). We will explore this when we discuss mechanisms. Alternatively, we also check the robustness of our estimates after controlling for other input usage. The second reason for having negative inefficiency values could be more mechanical due to the way we assign potential yield to plots. For instance, a plot might get assigned a rainfed-low input combination because they did not report using a tractor in the survey, but it is possible that they used other inputs, qualifying as high input usage. So, in this case, the negative inefficiency is on account of the actual yield being compared

to a lower, more conservative, estimate of potential yield. To address this issue, we test for the sensitivity of our estimates to the use of alternative input mixes for potential yield construction, which we report in the appendices. Finally, even with the right assignment of input combination at the plot level, the geographical location of the farming plot could have a higher potential yield than the average potential yield reported at the GAEZ cell level. Given the large size of a GAEZ cell, around 8000 hectares for Bangladesh on average, there exists heterogeneity in land productivity (see footnote 13) for growing any crop within it (Sotelo, 2020). Thus, a plot with better land quality than the average land quality of the GAEZ cell in which it lies will be able to achieve a higher actual yield compared to the average GAEZ potential yield. We check the robustness of our estimates to this by assuming plot-level potential yields to follow i.i.d Frechet distribution and then comparing the 90th percentile plot-level potential yield with the actual yield to measure plot-level inefficiency. Results of this robustness exercise are reported in table C.6 and the details of simulation exercise can be found in appendix A.

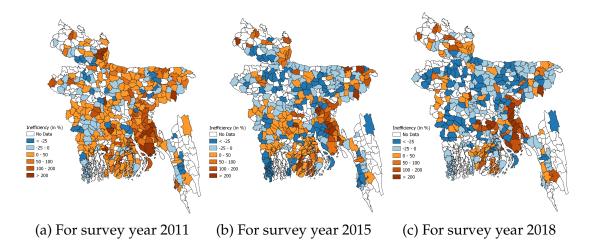


Figure 4: Village-level inefficiency over survey years using surveyed households

Notes: For each survey year, we calculate the village-level inefficiency by taking a simple average of plot-level inefficiency in a village. The "No Data" villages are the ones that were not a part of BIHS.

In figure 4, we look at the inefficiency measure aggregated at the village level as the simple average of plot inefficiencies. Clearly, there has been a declining trend of inefficiency over the years, with a greater number of villages falling in the lower inefficiency brackets over time. For instance, the share of villages with negative inefficiency (blue-colored) increased from 30 percent in 2011 to 54 percent in 2015 and 64 percent in 2018. The figure also shows the spatial variation of inefficiency in rice production across Bangladesh. One stark observation is that the villages along the eastern boundary and the coastal villages in the south-east have positive inefficiencies which don't go down

¹⁹Historically, farmers positively select the land for cultivation and given the large size of a simulation plot (5 hectares compared to average plot size less than 1 hectares in data), it is a fair assumption to compare a higher percentile potential yield for measuring inefficiency.

in the post-ACCI period as well.

3.4 Descriptive Statistics

Table 1: Summary Statistics for Key Variables over the Survey Years

Variable	2011	2015	2018	Total
Inefficiency (in Percentages)	28.070	9.061	1.028	14.683
	(182.174)	(153.484)	(94.813)	(154.116)
Actual Yield (in Kilograms per Hectare)	3586.791	4101.699	4194.39	3916.273
	(1686.916)	(1632.24)	(1475.167)	(1638.473)
Phone Service in the Village (=1 if Yes)	0.413	0.465	0.457	0.442
	(0.492)	(0.499)	(0.498)	(0.497)
Used Rainfed Farming (=1 if Yes)	0.327	0.311	0.281	0.309
	(0.469)	(0.463)	(0.450)	(0.462)
Used Tractor (=1 if Yes)	0.072	0.078	0.102	0.082
	(0.258)	(0.268)	(0.303)	(0.274)
Plot Ownership (=1 if owned)	0.562	0.594	0.572	0.575
	(0.496)	(0.491)	(0.495)	(0.494)
Has Agricultural Subsidy Card (=1 if Yes)	0.191	0.358	0.272	0.267
	(0.393)	(0.479)	(0.445)	(0.442)
Minimum Temperature of the Village (in °C)	18.054	17.364	17.709	17.737
	(5.347)	(5.040)	(4.206)	(4.974)
Maximum Temperature of the Village (in °C)	29.926	29.092	29.080	29.429
	(3.160)	(4.836)	(3.459)	(3.881)
Average Yearly Rainfall of the Village (in mm)	299.255	165.936	240.471	240.087
	(506.818)	(243.298)	(247.398)	(378.904)
Observations	11254	9018	7320	27592

Notes: The table reports the means for the main dependent, explanatory, and control variables employed in our analysis. Standard deviations are in parentheses. The values are for observations restricted to non-missing values of all the variables reported here. The variables *Inefficiency*, *Actual Yield*, *Used Rainfed Farming*, *Used Tractor*, and *Plot Ownership* are captured at the plot level. *Agricultural Subsidy Card* dummy is captured at the household level. Weather measures are captured at the village level.

Let us now look at the trend of some of our key variables over time. Table 1 presents the descriptive statistics of key variables for the three years of the survey. Overall, we observe a declining trend in the inefficiency measure and an increase in average rice yields in Bangladesh. These trends are consistent with Figure 4. Around 44 percent of the villages in our sample report the availability of phone service. In terms of household and plot characteristics, about one-third of households report practicing rainfed farming. The reported machine use is low, with only 8 percent of households reporting tractor use. Finally, 27 percent of households report having an agricultural subsidy card, which allows them to purchase inputs at government-subsidized prices. These statistics highlight that the average inefficiency in rice production has reduced even

with relatively low levels of mechanization, rainfed irrigation, and limited coverage of input subsidies. In the next section, we discuss how the ACCI contributed to the observed trends in rice productivity and inefficiency.

Figure 5 shows the trend in phone coverage in the BIHS villages over time. As we can see, similar to Figure 2, the BIHS sample communities have also reported a rapid increase in access to phone services over time, starting from the early 2000s. However, during the survey years, the overall access has remained mostly stable between 41-47 percent. This indicates that the access to the ACCI did not vary much for these villages during the survey round. Therefore, the spatial dimension of this access is more important for our analysis than the temporal dimension. As it remains possible that the communities improved their access to phone services as a response to the intervention, in Appendix C we also demonstrate the robustness of our results, keeping the access to phone services fixed at the baseline.

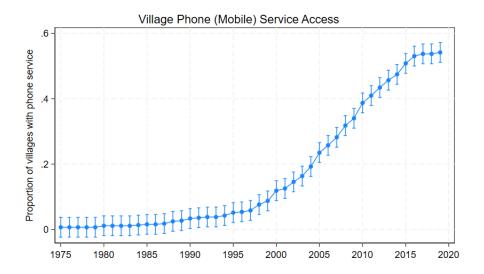


Figure 5: Telephone (or mobile phone) coverage in the surveyed villages *Source*: Based on the community survey module for the third round of BIHS.

4 Results

4.1 Impact of ACCI on Agricultural Performances

Table 2 presents estimates from the baseline difference-in-differences (regression (1)) and triple-difference (regression (2)) specifications that document the post-intervention effect of the ACCI on plot-level agricultural outcomes and the heterogeneity of these effects by input use. For comparison, we present estimates with both plot level inefficiency and actual yield as the dependent variables.

Table 2: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-5.640 (11.410)	-164.784 (101.555)	-8.381 (7.746)	-111.050 (96.423)
Phone Service in the Village \times Post ACCI	-15.634** (6.794)	110.545 (99.436)	-1.963 (4.048)	87.096 (80.204)
Used Rainfed Farming			-0.423 (7.245)	-161.954** (73.481)
Used Tractor			230.904*** (11.984)	-5.803 (70.683)
Used Rainfed Farming \times Phone Service in the Village			24.223** (10.750)	-222.761*** (85.864)
Used Tractor \times Phone Service in the Village			16.643 (30.384)	43.134 (131.907)
Used Rainfed Farming \times Post ACCI			-1.518 (9.273)	87.067 (92.611)
Used Tractor \times Post ACCI			-63.520*** (22.440)	257.615* (147.503)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-43.539*** (12.223)	163.653 (120.209)
Used Tractor \times Phone Service in the Village \times Post ACCI			-15.905 (39.255)	-82.591 (252.435)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	27298	27991	27298	27723
R^2	0.399	0.631	0.468	0.633

Notes: *p<0.10, ***p<0.05, ****p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Looking at columns (1) and (2) we observe that the arrival of phone service in the village by itself does not influence inefficiency or actual paddy yields. As hypothesized, the availability of village phone service reduces inefficiency only after the intervention. In terms of magnitude, the intervention led to a 50 percent reduction in the average baseline inefficiency, as documented in column (1). Though the estimates with actual yield are in the expected direction, they are statistically insignificant.

To see how our baseline estimates vary based on irrigation choice and tractor usage, columns (3) and (4) present estimates from the triple difference specification. We causally interpret the coefficient on only the triple interaction terms. We find that the impact of the intervention on inefficiency is driven primarily by rainfed farming. Although the triple interaction of tractor use, village telephone service, and post-ACCI has a negative coefficient estimate, it's statistically insignificant. Given the average use of rainfed farming for our sample (around 31 percent), the differential impact of the intervention on the inefficiency reduction for the average farmer in our sample is around 45 percentage points. This corresponds to around a 0.1 standard deviation

decrease in our constructed inefficiency measure for our sample.

How do these estimates compare to experimental evidence? Casaburi et al. (2014), for example, find an 11.5 percent increase in sugarcane yields from randomized SMS-based extension advice in Kenya. Comparing several experimental studies, Fabregas et al. (2019b) report that digital extension programs to farmers increased crop yields by about 4 to 6 percent. Our estimates are somewhat larger but not directly comparable with these estimates for two reasons. First, the dependent variable we consider is not just crop yield but rather the deviation from the potentially achievable yield. In fact, we get a null result from using actual yields. Second, our estimates also incorporate the possible spillover and network effects of such extension programs. We discuss such effects in Section 5.

4.2 Robustness Checks

4.2.1 Robustness with respect to placebo intervention between 2011 and 2015

Table 3: Placebo Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-5.094 (14.057)	-113.538 (135.591)	-1.475 (9.473)	-93.224 (118.973)
Phone Service in the Village \times Placebo Post ACCI	-7.751 (9.346)	36.334 (133.069)	-13.149* (6.711)	140.657* (83.189)
Used Rainfed Farming			-0.969 (8.163)	-195.520*** (73.913)
Used Tractor			253.207*** (15.392)	-76.138 (74.331)
Used Rainfed Farming \times Phone Service in the Village			19.663 (13.247)	-71.774 (92.964)
Used Tractor \times Phone Service in the Village			-17.477 (33.301)	170.528 (132.920)
Used Rainfed Farming \times Placebo Post ACCI			-6.613 (11.408)	235.266** (116.815)
Used Tractor \times Placebo Post ACCI			-54.185*** (17.591)	148.211 (126.174)
Used Rainfed Farming \times Phone Service in the Village \times Placebo Post ACCI			5.276 (18.814)	-276.500** (132.715)
$Used \ Tractor \times Phone \ Service \ in \ the \ Village \times Placebo \ Post \ ACCI$			47.589 (33.447)	-237.195 (261.127)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	20000	20621	20000	20354
R^2	0.441	0.689	0.495	0.691

Notes: * p<0.10, *** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). All regressions use data from the first two rounds of the Bangladesh Integrated Household Survey (BIHS 2011 & 2015). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Placebo Post ACCI is the time dummy capturing whether the survey year is 2015. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

While our benchmark estimates are encouraging, there is a possibility that they are

correlated with other changes in the village during the post-intervention period. One way of testing the robustness of our estimates is to generate a placebo intervention. We do that by re-coding the post-ACCI dummy to be 1 for the second round and limiting the sample to only the first two rounds of the BIHS data. Given that the intervention was actually scaled up after June 2014, we should not see an effect prior to the intervention being implemented in full force.²⁰

Table 3 presents the estimates from the placebo test. Estimates on the double interaction term in columns (1) and (2) are small in magnitude and statistically insignificant. Similarly, the estimates from the triple interactions are mostly statistically insignificant and of the opposite sign (columns (3) and (4)). More importantly, the estimates for the triple interactions for the outcome inefficiency (our main outcome of interest) are statistically insignificant. Hence, our main findings from this specification disappear when we use the placebo intervention, providing support in favor of the credibility of our approach.

4.2.2 Robustness with respect to shuffled values of input usage

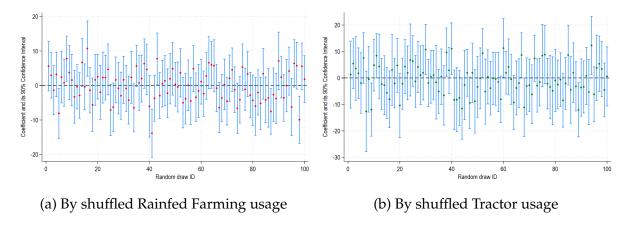


Figure 6: Effect of the Agricultural Call Center Intervention by randomly shuffled input usage

Notes: The reported triple-difference coefficients for the specification (2), with input usage being captured by shuffled dummies on Rainfed Farming usage and Tractor usage. The coefficients for each draw are coming from the interaction of the respective (shuffled) input usage with the variables *Phone Service in the Village* and Post ACCI in the same regression. Each draw represents a random shuffling of both input usage from their respective distributions by survey year. *Phone Service in the Village* dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention.

We do another test to see whether we are able to re-create the results we observe in the triple difference specification for the outcome variable *Inefficiency* in Table 1 if we randomly shuffle a household's rainfed farming and tractor use status. The presence

²⁰While the intervention was launched in June 2014, the recall period of the second round of the BIHS was from December 1, 2013, to November 30, 2014.

of statistically significant estimates with this shuffled input usage will signal that the triple difference specification is picking up spurious effects probably driven by other correlated factors. We do such a random shuffling 100 times, collecting the estimates from the triple difference specification each time. Figures 6a and 6b plot the estimates for the triple difference coefficients (with *Inefficiency* as the outcome variable) with confidence intervals from this exercise. The figures show that there is no systematic pattern in these coefficient estimates, and most of them are statistically indistinguishable from zero.

We do several other robustness checks to ensure that our results are not driven by spurious correlations, which we report in Appendix C.

4.3 Mechanisms

We further investigate the possible mechanisms behind the effects observed in the previous section. First, we test whether the effects are driven by improved extension services in villages with phone service after the ACCI. For this purpose, we estimate the triple difference specification (2) with the information on in-person extension services as dependent variables. As documented in Figure 7, we do find some post-intervention evidence of differentially greater access to extension agents for farmers that use rainfed farming, but we do not find any statistically significant effects on the likelihood of an extension visit or whether the farmer actively seeks advice from an agent.

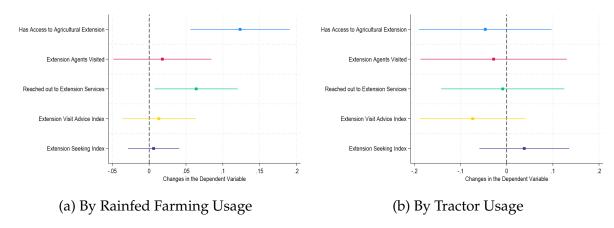


Figure 7: Effect of Agricultural Call Center Intervention on Interaction with Extension Services

We also estimate the triple difference specification (2) with input use (other than water source or tractor usage) per hectare as dependent variables. Figure 8 documents the associated results. Farmers may not achieve potential paddy yields because they are under or overusing critical inputs such as fertilizer and other agrochemicals. We observe that in villages with telephone service, farmers using rainfed farming differentially increased the use of fertilizer and pesticides, and the farmers using tractors differentially reduced fertilizer and pesticide use after the intervention.

These findings are consistent with the fact that incorrect fertilizer use (for example, urea) can be easily diagnosed by the color of leaves, and the remedies can be easily and quickly disbursed by experts from agricultural call centers (Islam and Beg, 2021). Similarly, pest infestation is easily visually diagnosable by farmers. For example, rice blast, a common paddy fungal disease, manifests itself as large white and yellow spots on the leaves. Evidence shows that farmers generally consult call center services for advice on agrochemicals as they are concerned about plant protection to avoid severe damage due to pest attacks (Kumar et al., 2021). In addition, figure 8 shows that farmers using tractors differentially spent more on seeds after the intervention. Interestingly, we also find evidence of longer work hours for family labor after intervention. These results are consistent with an intensification of input use on the farms.

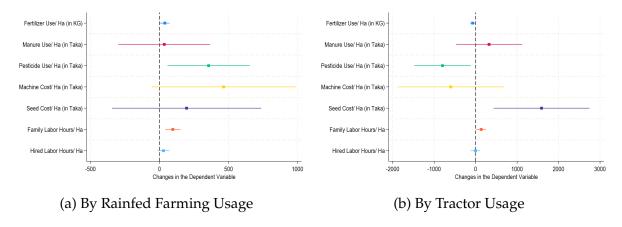


Figure 8: Effect of Agricultural Call Center Intervention on Other Input Uses

5 Heterogeneity Analysis: The Role of Networks

5.1 Construction of Geographic Networks

We now turn to understanding the role of social networks in amplifying the impact of ACCI. To investigate the role of social networks in augmenting the effect of ICTs in the transmission of information related to the efficient use of resources, we need to first construct these networks. Ideally, data on social interactions are collected and used for this purpose. In scenarios where the data on social interactions are not available, geographic proximity can be used as a proxy measure of these interactions. The rationale behind this approach lies in the ease of communication between agents who live close to each other (Goldenberg and Levy, 2009; Helsley and Zenou, 2014; Kim et al., 2023). This is the approach we follow for our analysis. Using the geographic location of the households surveyed in BIHS, we construct an undirected network

²¹For details on how to collect data on social networks, one can consult: https://blogs.worldbank.org/en/impactevaluations/how-to-collect-data-on-social-networks-

of households based on the geographic distance between these households. In our constructed network, each pair of households is considered to be connected as long as they live within 5 kilometers of each other's house, irrespective of whether they are part of the same community. This allows for cross-community connections that help us study the spillover effect of the intervention across communities.

Figure 9 presents the geographic network that we constructed. The nodes represent the households in our sample as documented in the baseline, colored by their respective administrative divisions. The edges between each pair of nodes represent the geographic connection between the pair of households, with no edge between the households that are not geographically close to each other. Nodes with more edges are more central in the network and are in the center of the figure. On the contrary, nodes with fewer edges are less central and are in the periphery. The less central nodes represent households that are geographically remote from most of the other households and are probably the main expected beneficiaries of the intervention.

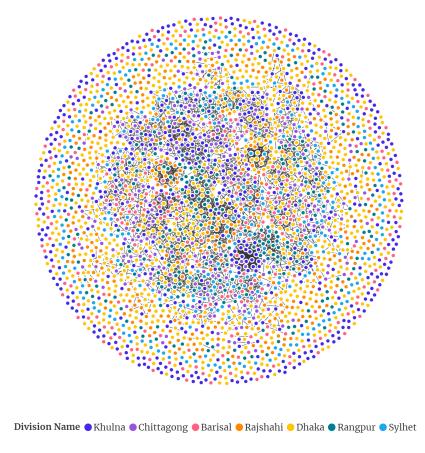


Figure 9: Geographic Distance Network

Notes: The figure displays the undirected geographic distance network using the Bangladesh Integrated Household Survey (BIHS) data from the baseline (2011). The nodes represent households, and the edges represent the geographic connection between two households. Any pair of households are assumed to be geographically connected if they live within 5 kilometers of each other.

The role of geography in economic development is well-documented in the literature (Donaldson and Hornbeck, 2016; Aggarwal, 2018; Asher and Novosad, 2020; Banerjee et al., 2020; Shamdasani, 2021) and the central households are already well-connected for them to benefit from the transmission of information from their social ties. However, most of the remote households lack the number of connections required for the effective diffusion of knowledge. ²² Thus, we expect the remote households to benefit more from the intervention. This is the hypothesis we test below using the specification (4).

For our analysis of heterogeneous network effects, we use *Betweenness Centrality* as the measure of network centrality. The measure captures the importance of a node in terms of connecting with other nodes in a network and accessing information from them (Jackson, 2010; Bloch et al., 2023).²³ The measure is widely used in the literature on network-based interventions as a measure of the centrality of nodes (see, for example, Banerjee et al., 2013; Beaman and Dillon, 2018; Beaman et al., 2021). For our purpose, it is particularly useful as the nodes with higher betweenness centrality are often considered the gatekeepers of the information.²⁵ So, by investigating whether households with lower betweenness centrality differentially benefit from ACCI, we effectively study whether the intervention is successful in helping the information needs of the population that finds it particularly difficult to obtain such information.

5.2 Empirical Specifications

Do the effect of ACCI vary differentially by geographic network centrality?

To answer the above question, we use the following triple-differences specification that exploits the household-level variation in network centrality. Network centrality measures are used to capture the node's position in a network (Jackson, 2010). Betweenness centrality helps capture the importance of a node in terms of connecting with other nodes in a network and accessing information from them (Jackson, 2010; Bloch et al., 2023). We do not have data on social interactions, but we have the geographic location of the households, which we use to construct the geographic networks of households in our data. Using this network, we subsequently calculate the betweenness centrality

$$\text{Betweenness Centrality}_k = \sum_{\forall i,j \text{ s.t.} i \neq j \text{ and } k \notin \{i,j\}}^{\infty} \big(\frac{N_{ij}^k}{N_{ij}}\big),$$

with
$$\frac{N_{ij}^k}{N_{ii}} = 0$$
 if $N_{ij} = 0$.

²²Beaman et al. (2021) documents that multiple connections are required for effective diffusion of knowledge.

²³Let N_{ij}^k denote the number of geodesic paths between nodes i and j that pass through node k in any given network. Also, denote the total number of geodesic paths from i to j to be N_{ij} for the same network. Then, the betweenness centrality of node k in that network is defined as:

²⁵Source: https://visiblenetworklabs.com/2022/09/30/network-science-a-reference-guide/.

of all households in our sample. We provide a detailed description of the network construction and the subsequent calculation of our betweenness centrality measure in the next sub-section. We use this centrality measure in the following triple-differences specification:

```
Outcome_{ijcdpst} = \beta_0 + \beta_1Phone Service_{cdt} + \beta_2Inverse Betweenness_{icd}
+ \beta_3Phone Service_{cdt} \times Inverse Betweenness_{icd} + \beta_4Phone Service_{cdt} \times Post ACCI_t
+ \beta_5Inverse Betweenness_{icd} \times Post ACCI_t
+ \beta_6Phone Service_{cdt} \times Inverse Betweenness_{icd} \times Post ACCI_t
+ \sigma_i + \delta_p + \phi_s + \lambda_t + \psi_d \times \lambda_t + \mu_{ijcdpst}, (4)
```

where $Inverse\ Betweenness_{icd}=\frac{1}{1+Betweenness\ Centrality_{icdt}}$ captures the inverse of betweenness centrality for household i from community c of division d. The objective of this specification is to understand the differential effect of ACCI post-intervention by geographic proximity away from geographically central households. The importance of extension in reaching geographically remote households is well emphasized in the policy domain (Abate et al., 2020; Maulu et al., 2021; Lee et al., 2023). Whether an agricultural extension intervention is successful in reaching geographically remote households is an important indicator of the intervention's effectiveness (cite), and the role of Information and Communication Technologies (ICTs) is well-recognized in this regard (Westermann et al., 2018; Fabregas et al., 2019b).

The specification (4) captures this through the coefficient β_6 . A negative value of this coefficient for the *Inefficiency* outcome variable would indicate that the intervention is successful in improving the efficiency of households living further from the central households (i.e., those living in the periphery of their networks).

Do the effect of ACCI vary differentially by dyadic geographic distances?

Finally, we use the dyadic data frame of the geographic networks to study the spillover effect of the intervention within geographic networks in the post-intervention period. We provide details on the construction of this dyadic data frame in the next sub-section. Using this data frame, we explore the differential effect of ACCI post-intervention by dyadic geographic distances.

Consider two households i and i'. We want to capture how the impact of ACCI on the community c' of household i' post-intervention differentially affects household i's inefficiency by the distance between the households. We use the following specification

for this purpose:

Outcome_{icdst} =
$$\gamma_0 + \gamma_1$$
Phone Service_{c't} + γ_2 Phone Service_{c't} × Inverse Distance_{ii'} + γ_3 Phone Service_{c't} × Post ACCI_t + γ_4 Inverse Distance_{ii'} × Post ACCI_t + γ_5 Phone Service_{c't} × Inverse Distance_{ii'} × Post ACCI_t + $\gamma_6 X_{ijcdt} + \sigma_{ii'} + \phi_s + \lambda_t + \psi_d \times \lambda_t + \nu_{icdst}$, (5)

where $Inefficiency_{icdst}$ captures the inefficiency in the use of all agricultural plots used by household i from community c of division d at year t for season s, $Phone\ Service_{c't}$ is a dummy indicating whether the community c' (the community of household i') reported having phone service at year t, and Inverse Distance $_{ii'}$ represents the inverse of geographic distance between households i and i', captured at the baseline. Our coefficient of interest is γ_5 , which captures how much the post-intervention impact of ACCI in the community of household i' differentially affects the outcome of household i, lower the distance between households i and i'. We expect this coefficient to be negative for the Inefficiency outcome variable if the network spillovers of the program reduce inefficiency.

5.3 Results

Table 4 documents the potential for ACCI to reach agents from geographically remote areas. For this purpose, we use specification (4), which exploits the variation in the geographic network centrality of the households, in addition to the spatiotemporal variation in access to phone services and the temporal variation in the timing of the intervention. We causally interpret the coefficient on only the triple interaction terms. The results in columns (1) and (2) show that the agricultural inefficiency differentially decreased and actual yield differentially increased for geographically remote farmers that have low betweenness centrality. However, columns (3) and (4) show that this impact is not driven by changes in the use of rainfed farming and tractors, as the associated coefficients are small and statistically insignificant.

Given the variation in the *Inverse Betweenness Centrality* of farmers in the baseline (around 0.3 standard deviations), the differential impact of the intervention on the inefficiency reduction in our sample is around 0.1 standard deviations. For the average farmer in our sample, this corresponds to a 13 percentage points (or 0.3 standard deviations) increase in actual yield.

The above results show that although the program was successful in reaching remote farmers, decreasing the inefficiency associated with their agricultural production and improving their yield, this is not driven by the farmers adjusting their use of rainfed farming and tractors. Thus, the results seem to be driven by the more efficient use of

Table 4: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes

	(1)	(2)	(3)	(4)
	Inefficiency	Actual Yield	Used Rainfed	Used
			Farming	Tractor
Phone Service in the Village	-30.551	-3.942	-0.116*	-0.084
	(22.565)	(272.676)	(0.064)	(0.069)
Phone Service in the Village \times Post ACCI	30.117	-378.156*	-0.005	-0.033
	(19.934)	(201.094)	(0.049)	(0.054)
Inverse Betweenness Centrality \times Phone Service in the Village	31.452	-197.648	0.124*	0.082
	(26.469)	(307.141)	(0.072)	(0.079)
Inverse Betweenness Centrality \times Post ACCI	24.934	-442.374***	0.005	-0.063
	(17.624)	(151.379)	(0.036)	(0.043)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-54.567**	578.403**	0.031	0.010
	(22.727)	(226.715)	(0.056)	(0.059)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	27064	27745	27745	27482
R^2	0.400	0.630	0.673	0.558

Notes: *p<0.10, **p<0.05, ***p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

the same mix of rainfed farming and tractors. This indicates the importance of ACCI in communicating information regarding the efficient use of existing inputs and benefiting geographically remote farmers, who do not have access to such information otherwise.

Furthermore, Table 5 reports the potential amplification of the program's impacts through social spillovers. Using the specification (5), here we investigate whether the outcomes for household i get differentially affected if the community of household i' receives ACCI, as the distance between the pair of households decreases. It is important to note that this specification controls for *Phone Service in the Village of i* dummy measuring whether community of household i reported having phone service in the year interacted with the Post ACCI dummy. This partials out the post-intervention impact of ACCI on household i's own community. Therefore, we can interpret the triple interaction terms as the cross-community spillover effect of the intervention.

Columns (1) and (2) show that the spillover significantly reduces inefficiency and increases actual yield, in line with our expectations. However, in terms of the inputs, we only observe significant impacts on the use of rainfed farming and not on the use of tractors, as documented in columns (3) and (4). The average distance between each pair of households in our sample is around 3.8 kilometers (with a standard deviation of 2.8), which corresponds to around 0.3 units in our *Inverse Distance* measure (with a standard deviation of 0.2).

Given these numbers, the differential impact of the intervention in the community of an average household i' on the inefficiency of another average household i in our sample is a decrease of around 0.2 standard deviations. For all farmers in our sample,

Table 5: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural Outcomes

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village of <i>i</i> ¹	-63.407**	-96.802	0.026	-0.090***
	(24.589)	(597.956)	(0.032)	(0.034)
Phone Service in the Village of $i' \times Post ACCI$	38.906*	-455.164	-0.038*	-0.034*
	(20.630)	(536.658)	(0.022)	(0.020)
Inverse Distance between i and $i' \times \text{Phone Service}$ in the Village of i'	60.702	-667.826	-0.012	0.163
	(45.190)	(1667.954)	(0.095)	(0.109)
Inverse Distance between i and $i' \times Post$ ACCI	102.427***	-3623.542**	-0.184***	-0.033
	(35.110)	(1563.588)	(0.042)	(0.038)
Inverse Distance between i and i' × Phone Service in the Village of i' × Post ACCI	-119.823***	4161.021**	0.144**	0.086
	(46.327)	(1912.950)	(0.064)	(0.054)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	60724	60724	60724	60667
R^2	0.243	0.875	0.658	0.597

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i' level are in parentheses. Phone Service in the Village of i' dummy measures whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and $i' = \frac{1}{1+Distance} \frac{1}{1+D$

this translates into a 0.1 standard deviation decrease in inefficiency. The decrease also corresponds to a 0.7 standard deviation (or 33 percentage points) increase in actual yield and a 13 percentage points increase in the probability of adopting rainfed farming for an average farmer. These results document large cross-community spillovers of the intervention. These results are consistent with evidence of community based spillover effects in ICT-driven extension programs (Fabregas et al., 2019b,a).

6 Summary and Concluding Remarks

Does ICT-based provision of agricultural extension services help improve agricultural productivity in poor or developing countries? Our paper tries to answer this question for rural Bangladesh, where the majority of the agriculture-dependent population is engaged in the production of rice crops. Even though the geography of Bangladesh is amenable to rice cultivation, the yields are low in the country relative to other major rice producing countries. In this context, we investigate the role of an Agricultural Call Center Intervention (ACCI) in reducing the inefficiency in rice production due to non-geographical factors. The novelty of our approach lies in the fact that we look at the impact of this intervention after controlling for the effects of geographical factors by using a micro-geographic dataset.

We document that the intervention was effective in reducing the plot-level inefficiency in rice production in those villages that had access to phone services. With the ability to provide need-based and farmer-specific extension services in the form of immediate expert advice, ACCI was able to help those farmers differentially more who were using rainfed water supply instead of irrigation. This reduction in inefficiency is found to be mediated by the increased usage intensity of various inputs on the farms. We further assess the heterogeneity in the impact of ACCI by geographic network centrality of the households, as the need for extension services varies by the households' positions in the network. Absent any intervention, one would expect more central and well-connected households to be able to access pertinent agricultural information better, whereas access remains difficult for remotely located households. Therefore, any ICT-based extension service should enable remotely located households to access information. Our results provide support in favor of this intuitive prediction. We show that there was a differentially higher reduction in the production inefficiency of remote households after the intervention.

Although our estimates are not directly comparable to existing experimental evidence, we find that our estimates are larger in magnitude. That could be either because we consider a different dependent variable that explicitly accommodates the heterogeneity in natural climatic conditions and micro-geography or because of spillovers. Evidence from the literature suggests that the spillover effects of ICT-based extension programs are important. We also provide evidence in support of such spillovers.

Given the robustness of our results to several robustness checks reported in Section 4.2 and Appendix C, we can confidently claim for positive causal impacts of ICT-based extension services on small-scale farmers who also happen to be more dependent upon rainfed based farming methods. Thus, policymakers can reliably use ICT-based extension services for their extension efforts in regions where mobile phone technologies have been disseminated widely. As suggested by our results, this can also increase access to information for remotely located or socially excluded households, increasing overall welfare.

While we perform several robustness and falsification tests to verify the validity of our results, a few limitations remain. The first one is that we are only able to capture the overall average effects of the program akin to the intention to treat estimate. While we do have information about the actual ownership of mobile phones at the household level, that will most likely be endogenous. Moreover, the survey asks for the number of mobile phones in households, which also includes phones owned by non-resident members working in regions with better mobile network coverage. One way of refining our estimation strategy could be to exploit the expansion of the mobile tower network in Bangladesh. However, we do not have access to location-specific temporal data on Bangladesh's mobile tower network. We are actively working in this direction and plan to explore this in future research.

Another limitation of our analysis is that for the purpose of documenting the role of networks in amplifying the impact of ACCI, we rely on geographic networks as a proxy

for social networks. While geography is documented to be an important factor driving social interactions (Kim et al., 2023), there is also evidence suggesting that physical proximity is not a good proxy for social connections in some contexts (Beaman et al. (2021)). Thus, it is important to interpret our results in terms of geographic proximity and not overemphasize its implications for social proximity. A detailed analysis of the importance of social interactions in driving the impact of ICT-based interventions remains beyond the scope of this paper.

This paper adds to our understanding of the role of information friction in keeping agricultural productivity low in poor and developing countries. Our analysis makes it clear that the availability of ICT-based agricultural extension services can significantly alleviate the inefficiency in agricultural production. By using different policy interventions placed in different institutional contexts, it will be interesting to measure the extent of inefficiency or misallocation caused by information frictions within the agriculture sector and between sectors in an economy. We leave it as a potential future research work in the burgeoning field of macro-development, which can build on our findings to study the direct and indirect productivity costs of information frictions.

References

- ABATE, G. T., M. DEREJE, K. HIRVONEN, AND B. MINTEN (2020): "Geography of public service delivery in rural Ethiopia," *World Development*, 136, 105133.
- ADAMOPOULOS, T. AND D. RESTUCCIA (2014): "The size distribution of farms and international productivity differences," *American Economic Review*, 104, 1667–1697.
- ——— (2020): "Land reform and productivity: A quantitative analysis with micro data," American Economic Journal: Macroeconomics, 12, 1–39.
- ——— (2022): "Geography and Agricultural Productivity: Cross-Country Evidence from Micro Plot-Level Data," *The Review of Economic Studies*, 89, 1629–1653.
- AGGARWAL, S. (2018): "Do rural roads create pathways out of poverty? Evidence from India," *Journal of Development Economics*, 133, 375–395.
- AKBARPOUR, M., S. MALLADI, AND A. SABERI (2020): "Diffusion, Seeding, and the Value of Network Information," *Unpublished Manuscript*.
- AKER, J. C. (2011): "Dial "A" for agriculture: a review of information and communication technologies for agricultural extension in developing countries," *Agricultural Economics*, 42, 631–647.

- AKER, J. C., I. GHOSH, AND J. BURRELL (2016): "The promise (and pitfalls) of ICT for agriculture initiatives," *Agricultural Economics*, 47, 35–48.
- AKER, J. C. AND C. KSOLL (2016): "Can mobile phones improve agricultural outcomes? Evidence from a randomized experiment in Niger," *Food Policy*, 60, 44–51.
- ALAM, M. R. AND Y. KIJIMA (2024): "Incentives to Improve Government Agricultural Extension Agent Performance: A Randomized Controlled Trial in Bangladesh," *Economic Development and Cultural Change*, 72, 1295–1316.
- ANDERSON, J. R. AND G. FEDER (2004): "Agricultural Extension: Good Intentions and Hard Realities," *The World Bank Research Observer*, 19, 41–60.
- ——— (2007): Chapter 44 Agricultural Extension, Elsevier, 2343–2378.
- ASHER, S. AND P. NOVOSAD (2020): "Rural Roads and Local Economic Development," *American Economic Review*, 110, 797–823.
- ASIAN DEVELOPMENT BANK (2023): Bangladesh's Agriculture, Natural Resources, and Rural Development Sector Assessment and Strategy, Asian Development Bank.
- BANDIERA, O. AND I. RASUL (2006): "Social Networks and Technology Adoption in Northern Mozambique," *The Economic Journal*, 116, 869–902.
- BANERJEE, A., E. BREZA, A. G. CHANDRASEKHAR, AND B. GOLUB (2023): "When Less Is More: Experimental Evidence on Information Delivery During India's Demonetisation," *Review of Economic Studies*, 91, 1884–1922.
- BANERJEE, A., A. G. CHANDRASEKHAR, E. DUFLO, AND M. O. JACKSON (2013): "The Diffusion of Microfinance," *Science*, 341.
- BANERJEE, A., E. DUFLO, AND N. QIAN (2020): "On the road: Access to transportation infrastructure and economic growth in China," *Journal of Development Economics*, 145, 102442.
- BANGLADESH BUREAU OF STATISTICS (2022): *ICT Use and Access by Individuals and Households*, Ministry of Planning Government of the People's Republic of Bangladesh.
- BAYES, A. (2001): "Infrastructure and rural development: insights from a Grameen Bank village phone initiative in Bangladesh," *Agricultural Economics*, 25, 261–272.
- BEAMAN, L., A. BENYISHAY, J. MAGRUDER, AND A. M. MOBARAK (2021): "Can Network Theory-Based Targeting Increase Technology Adoption?" *American Economic Review*, 111, 1918–1943.

- BEAMAN, L. AND A. DILLON (2018): "Diffusion of agricultural information within social networks: Evidence on gender inequalities from Mali," *Journal of Development Economics*, 133, 147–161.
- BENYISHAY, A. AND A. M. MOBARAK (2018): "Social Learning and Incentives for Experimentation and Communication," *The Review of Economic Studies*, 86, 976–1009.
- BLOCH, F., M. O. JACKSON, AND P. TEBALDI (2023): "Centrality measures in networks," *Social Choice and Welfare*, 61, 413–453.
- BOLD, T., K. C. KAIZZI, J. SVENSSON, AND D. YANAGIZAWA-DROTT (2017): "Lemon Technologies and Adoption: Measurement, Theory and Evidence from Agricultural Markets in Uganda*," *The Quarterly Journal of Economics*, 132, 1055–1100.
- Breza, E., A. Chandrasekhar, B. Golub, and A. Parvathaneni (2019): "Networks in economic development," *Oxford Review of Economic Policy*, 35, 678–721.
- BUSTOS, P., B. CAPRETTINI, AND J. PONTICELLI (2016): "Agricultural Productivity and Structural Transformation: Evidence from Brazil," *American Economic Review*, 106, 1320–1365.
- CAMPENHOUT, B. V. (2021): "The Role of Information in Agricultural Technology Adoption: Experimental Evidence from Rice Farmers in Uganda," *Economic Development and Cultural Change*, 69, 1239–1272.
- CASABURI, L., M. KREMER, S. MULLAINATHAN, AND R. RAMRATTAN (2014): "Harnessing ICT to Increase Agricultural Production: Evidence from Kenya," *Unpublished Manuscript*.
- CHAKRABORTY, A. (2024): "Network-Based Targeting with Heterogeneous Agents for Improving Technology Adoption," *Unpublished Manuscript*.
- CHEN, C. (2017): "Untitled land, occupational choice, and agricultural productivity," *American Economic Journal: Macroeconomics*, 9, 91–121.
- CHENG, H. W. J. (2021): "Factors Affecting Technological Diffusion Through Social Networks: A Review of the Empirical Evidence," *The World Bank Research Observer*, 37, 137–170.
- COLE, S. A. AND A. N. FERNANDO (2020): "'Mobile'izing Agricultural Advice Technology Adoption Diffusion and Sustainability," *The Economic Journal*, 131, 192–219.
- DASGUPTA, K. AND R. RAO (2022): "Land Misallocation and Industrial Development," SSRN Electronic Journal.

- DEICHMANN, U., A. GOYAL, AND D. MISHRA (2016): "Will digital technologies transform agriculture in developing countries?" *Agricultural Economics*, 47, 21–33.
- DEPARTMENT OF AGRICULTURAL EXTENSION (2018): *Agricultural Extension Manual*, Ministry of Agriculture Government of the People's Republic of Bangladesh.
- DONALDSON, D. AND R. HORNBECK (2016): "Railroads and American Economic Growth: A "Market Access" Approach *," The Quarterly Journal of Economics, 131, 799–858.
- DUNCOMBE, R. (2016): "Mobile Phones for Agricultural and Rural Development: A Literature Review and Suggestions for Future Research," *The European Journal of Development Research*, 28, 213–235.
- FABREGAS, R., M. KREMER, M. LOWES, R. ON, AND G. ZANE (2019a): "SMS-extension and farmer behavior: lessons from six RCTs in East Africa," *Online at: https://www.atai-research.org/wp-content/uploads/2020/05/textfarmers1.pdf*.
- FABREGAS, R., M. KREMER, AND F. SCHILBACH (2019b): "Realizing the potential of digital development: The case of agricultural advice," *Science*, 366.
- FAFCHAMPS, M. AND B. MINTEN (2012): "Impact of SMS-based agricultural information on Indian farmers," *The World Bank Economic Review*, 26, 383–414.
- FOSTER, A. D. AND M. R. ROSENZWEIG (2010): "Microeconomics of Technology Adoption," *Annual Review of Economics*, 2, 395–424.
- FU, X. AND S. AKTER (2016): "The Impact of Mobile Phone Technology on Agricultural Extension Services Delivery: Evidence from India," *The Journal of Development Studies*, 52, 1561–1576.
- GALLIC, E. AND G. VERMANDEL (2020): "Weather shocks," European Economic Review, 124, 103409.
- GOLDENBERG, J. AND M. LEVY (2009): "Distance is not dead: Social interaction and geographical distance in the internet era," arXiv preprint arXiv:0906.3202.
- GOLLIN, D., S. PARENTE, AND R. ROGERSON (2002): "The role of agriculture in development," *American economic review*, 92, 160–164.
- GOLLIN, D., S. L. PARENTE, AND R. ROGERSON (2004): "Farm work, home work and international productivity differences," *Review of Economic dynamics*, 7, 827–850.
- ——— (2007): "The food problem and the evolution of international income levels," *Journal of Monetary Economics*, 54, 1230–1255.

- GOTTLIEB, C. AND J. GROBOVŠEK (2019): "Communal land and agricultural productivity," *Journal of Development Economics*, 138, 135–152.
- GUPTA, A., J. PONTICELLI, AND A. TESEI (2024): "Language Barriers, Technology Adoption and Productivity: Evidence from Agriculture in India," *Review of Economics and Statistics*, 1–28.
- HELSLEY, R. W. AND Y. ZENOU (2014): "Social networks and interactions in cities," *Journal of Economic Theory*, 150, 426–466.
- HENDERSON, J. V., Z. SHALIZI, AND A. J. VENABLES (2001): "Geography and development," *Journal of Economic Geography*, 1, 81–105.
- HUBER, S. AND K. DAVIS (2017): "Bangladesh: Desk Study of Extension and Advisory Services," USAID Feed the Future Developing Local Extension Capacity Project. Washington, DC: USAID. https://www.digitalgreen.org/wpcontent/uploads/2017/09/Bangladesh-Desk-Study.pdf.
- ISLAM, M. AND S. BEG (2021): "Rule-of-Thumb Instructions to Improve Fertilizer Management: Experimental Evidence from Bangladesh," *Economic Development and Cultural Change*, 70, 237–281.
- JACKSON, M. O. (2010): Social and Economic Networks, Princeton University Press.
- KIM, J. S., E. PATACCHINI, P. M. PICARD, AND Y. ZENOU (2023): "Spatial interactions," *Quantitative Economics*, 14, 1295–1335.
- KRISHNAN, P. AND M. PATNAM (2013): "Neighbors and Extension Agents in Ethiopia: Who Matters More for Technology Adoption?" *American Journal of Agricultural Economics*, 96, 308–327.
- KUMAR, M., K. K. CHATURVEDI, A. SHARMA, M. S. FAROOQI, S. B. LAL, A. LAMA, R. RANJAN, L. SONKUSALE, ET AL. (2021): "Assessment of queries of farmers at Kisan Call Center using natural language processing," *Indian Journal of Extension Education*, 57, 23–28.
- LEE, H. B., P. E. MCNAMARA, AND H. HO (2023): "Road accessibility and agricultural extension services in Malawi," *Agriculture & Food Security*, 12.
- MAGRUDER, J. R. (2018): "An Assessment of Experimental Evidence on Agricultural Technology Adoption in Developing Countries," *Annual Review of Resource Economics*, 10, 299–316.

- MAULU, S., O. J. HASIMUNA, B. MUTALE, J. MPHANDE, AND E. SIANKWILIMBA (2021): "Enhancing the role of rural agricultural extension programs in poverty alleviation: A review," *Cogent Food & Agriculture*, 7.
- MUNSHI, K. (2004): "Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution," *Journal of Development Economics*, 73, 185–213.
- NORTON, G. W. AND J. ALWANG (2020): "Changes in Agricultural Extension and Implications for Farmer Adoption of New Practices," *Applied Economic Perspectives and Policy*, 42, 8–20.
- RESTUCCIA, D. AND R. SANTAEULALIA-LLOPIS (2017): "Land misallocation and productivity," *NBER working paper*.
- RESTUCCIA, D., D. T. YANG, AND X. ZHU (2008): "Agriculture and aggregate productivity: A quantitative cross-country analysis," *Journal of monetary economics*, 55, 234–250.
- SARKER, M. R., M. V. GALDOS, A. J. CHALLINOR, AND A. HOSSAIN (2021): "A farming system typology for the adoption of new technology in Bangladesh," *Food and Energy Security*, 10.
- SHAMDASANI, Y. (2021): "Rural road infrastructure & agricultural production: Evidence from India," *Journal of Development Economics*, 152, 102686.
- SHEAHAN, M. AND C. B. BARRETT (2017): "Ten striking facts about agricultural input use in Sub-Saharan Africa," *Food Policy*, 67, 12–25.
- SOTELO, S. (2020): "Domestic trade frictions and agriculture," *Journal of Political Economy*, 128, 2690–2738.
- SURI, T. (2011): "Selection and comparative advantage in technology adoption," *Econometrica*, 79, 159–209.
- SURI, T. AND C. UDRY (2022): "Agricultural Technology in Africa," *Journal of Economic Perspectives*, 36, 33–56.
- TAKAHASHI, K., R. MURAOKA, AND K. OTSUKA (2019): "Technology adoption, impact, and extension in developing countries' agriculture: A review of the recent literature," *Agricultural Economics*, 51, 31–45.
- WESTERMANN, O., W. FÖRCH, P. THORNTON, J. KÖRNER, L. CRAMER, AND B. CAMP-BELL (2018): "Scaling up agricultural interventions: Case studies of climate-smart agriculture," *Agricultural Systems*, 165, 283–293.

ZILBERMAN, D., J. ZHAO, AND A. HEIMAN (2012): "Adoption Versus Adaptation, with Emphasis on Climate Change," *Annual Review of Resource Economics*, 4, 27–53.

Appendices

A Variation in potential yield within a GAEZ cell

The GAEZ dataset reports the average potential yield for each GAEZ cell at 5 arc-minute resolution by averaging the potential yield of 100 subfields at 30 arc-second resolution. Given the large size of a GAEZ cell, around 8000 hectares on average for Bangladesh, there is substantial variation in land productivity within a GAEZ cell. To account for this heterogeneity, we follow the approach adopted in Dasgupta and Rao (2022). Assume a continuum of parcels, indexed by ω , spanning a GAEZ cell i such that the potential productivity of parcel ω in producing rice under a given input combination c is given by $A_{ic}(\omega)$. If the parcel-level potential yield follows an i.i.d Frechet distribution, then the cdf is given by

$$Prob(A_{ic}(\omega) \le a) = exp(-\gamma^{\theta}(\overline{A}_{ic})^{\theta}a^{-\theta}).$$
 (6)

 \overline{A}_{ic} is the GAEZ-reported average potential yield for cell i under input combination c, θ is the shape parameter which denotes the inverse of the degree of land heterogeneity in a GAEZ cell, and γ is a mathematical Gamma function based normalization parameter which ensures that $\mathbb{E}[A_{ic}(\omega)] = \overline{A}_{ic}$. We adopt the calibrated value of shape parameter $\theta = 1.658$, as in Sotelo (2020).



Figure A.1: Frequency distribution of parcel-level potential yields within a GAEZ cell of size 7971 hectares. The input combination corresponds to rainfed water supply and low level of complementary inputs. The parcel size is kept at 5 hectares. Two outlier observations greater than 10000 kg/ha are not shown in this plot.

For our purpose, we operationalize the above by dividing each GAEZ cell into discrete parcels of equal size. To calculate parcel-level potential yields, we take an average of 500 independent draws from the above distribution in equation (6). Figure A.1 plots the frequency distribution of the potential yields at the parcel level in a GAEZ cell whose average potential yield for rainfed water supply and low complementary inputs was reported at 2546 kg per hectare in the GAEZ dataset, while its mean potential yield at the parcel level is around 2563 kg per hectare. It is important that the average parcel-level potential yield comes close to GAEZ-reported one so that our assumption of Frechet distribution is justified. In our simulations, we find that to be the case. The 90th percentile potential yield is 15% higher than the GAEZ-reported potential yield, and it is 34% higher than the 10th percentile potential yield, capturing well the land heterogeneity discussed above.

B Additional Results

Table B.1: Evolution of Phone Services by Division over the Survey Years

Survey Year	Barisal	Chittagong	Dhaka	Khulna	Rajshahi	Rangpur	Sylhet	Observations
2011	0.566 (0.500)	0.272 (0.445)	0.454 (0.498)	0.561 (0.496)	0.495 (0.500)	0.276 (0.447)	0.045 (0.206)	11661
2015	0.517 (0.500)	0.476 (0.500)	0.497 (0.500)	0.652 (0.476)	0.515 (0.500)	0.328 (0.470)	0.102 (0.303)	9417
2018	0.587 (0.493)	0.484 (0.500)	0.497 (0.500)	0.678 (0.467)	0.528 (0.499)	0.264 (0.441)	0.091 (0.287)	7689
Observations	1739	2266	9044	3336	6021	3571	2790	28767

Notes: Based on the community survey module for the third round of BIHS. The table reports the means, with standard deviations in parentheses.

Table B.2: Effect of the ACCI on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

	(1)	(2)	(3)	(4)
	All	Boro	Aman	Aus
Phone Service in the Village	-5.640	-6.100	14.251	-267.305***
	(11.410)	(9.134)	(14.798)	(59.057)
Phone Service in the Village \times Post ACCI	-15.634**	0.355	-23.056***	-57.171
	(6.794)	(7.302)	(8.855)	(38.097)
Mean Baseline Inefficiency	29.625	-13.987	62.617	98.165
(SD)	(208.816)	(112.529)	(248.972)	(313.016)
Observations	27298	12407	12959	1326
R^2	0.399	0.440	0.567	0.563

Notes: * p<0.10, *** p<0.05, *** p<0.01. Robust standard errors clustered at the community level are in parentheses. The dependent variable for all regressions is the *Inefficiency of Agricultural Yield. Phone Service in the Village* dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). *Mean Baseline Inefficiency* represents the average inefficiency of all plots calculated in the baseline year (2011) using a total of 12901 observations (6058 from Boro, 5762 from Aman, and 1081 from Aus season).

Table B.3: Differential Effect of the ACCI by Input Use on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

	(1)	(2)	(3)	(4)
	All	Boro	Aman	Aus
Phone Service in the Village	-8.381	1.822	-7.613	-238.158**
	(7.746)	(5.739)	(13.378)	(93.768)
Phone Service in the Village \times Post ACCI	-1.963	-1.618	4.123	13.386
	(4.048)	(3.812)	(9.158)	(43.477)
Used Rainfed Farming	-0.423	-6.672	-33.982***	-62.372
	(7.245)	(10.609)	(9.186)	(40.998)
Used Tractor	230.904***	149.831***	284.011***	302.257***
	(11.984)	(9.047)	(23.275)	(37.980)
Used Rainfed Farming \times Phone Service in the Village	24.223**	0.328	40.210***	127.860**
	(10.750)	(15.717)	(12.581)	(61.676)
Used Tractor \times Phone Service in the Village	16.643	5.204	-12.475	-59.311
	(30.384)	(12.997)	(45.564)	(44.195)
Used Rainfed Farming \times Post ACCI	-1.518	-2.933	19.137	1.035
	(9.273)	(13.369)	(13.102)	(41.723)
Used Tractor \times Post ACCI	-63.520***	-18.985	-101.701***	33.067
	(22.440)	(28.523)	(37.332)	(52.499)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI	-43.539***	1.369	-49.974***	-46.888
	(12.223)	(19.988)	(17.216)	(62.714)
$Used\ Tractor \times Phone\ Service\ in\ the\ Village \times Post\ ACCI$	-15.905	31.728	-11.730	-60.479
	(39.255)	(42.190)	(70.979)	(65.364)
Mean Baseline Inefficiency (SD)	29.625	-13.987	62.617	98.165
	(208.816)	(112.529)	(248.972)	(313.016)
Observations	27298	12407	12959	1326
R^2	0.468	0.516	0.634	0.651

Notes: * p<0.10, *** p<0.05, **** p<0.01. Robust standard errors clustered at the household level are in parentheses. The dependent variable for all regressions is the *Inefficiency of Agricultural Yield. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. *Used Rainfed Farming* and Used Tractor* dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table B.4: Differential Effect of the ACCI by Geographic Network Centrality on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

	(1)	(2)	(3)	(4)
	All	Boro	Aman	Aus
Phone Service in the Village	-30.551	-29.350	19.319	-268.568***
	(22.565)	(24.220)	(38.955)	(70.980)
Phone Service in the Village \times Post ACCI	30.117	40.706**	9.872	-95.334
	(19.934)	(17.835)	(33.480)	(106.663)
Inverse Betweenness Centrality \times Phone Service in the Village	31.452 (26.469)	30.563 (25.445)	-5.512 (45.959)	0.000
Inverse Betweenness Centrality \times Post ACCI	24.934	15.204	15.082	-70.142*
	(17.624)	(12.061)	(31.853)	(38.066)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-54.567**	-47.466**	-40.114	51.438
	(22.727)	(20.303)	(36.905)	(109.093)
Mean Baseline Inefficiency	29.625	-13.987	62.617	98.165
(SD)	(208.816)	(112.529)	(248.972)	(313.016)
Observations	27064	12274	12882	1308
R^2	0.400	0.440	0.567	0.564

Notes: *p<0.10, **p<0.05, **** p<0.01. Robust standard errors clustered at the household level are in parentheses. The dependent variable for all regressions is the Inefficiency of Agricultural Yield. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). Mean Baseline Inefficiency represents the average inefficiency of all plots calculated in the baseline year (2011) using a total of 12901 observations (6058 from Boro, 5762 from Aman, and 1081 from Aus season).

 $Table\ B.5:\ Differential\ Effect\ of\ the\ ACCI\ by\ Dyadic\ Geographic\ Distances\ on\ Plot-level\ Agricultural\ Inefficiency\ for\ Different\ Agricultural\ Seasons$

	(1)	(2)	(3)	(4)
	All	Boro	Aman	Aus
Phone Service in the Village of i'	-63.407**	-17.071**	-107.001*	-260.613**
	(24.589)	(7.520)	(55.612)	(115.204)
Phone Service in the Village of $i' \times Post ACCI$	38.906*	27.073***	77.000	-141.795
	(20.630)	(10.382)	(53.077)	(123.533)
Inverse Distance between i and i' × Phone Service in the Village of i'	60.702	59.058**	97.236	135.022
	(45.190)	(23.313)	(85.562)	(215.601)
Inverse Distance between i and $i' \times Post$ ACCI	102.427***	121.800***	142.425*	-71.996
	(35.110)	(43.916)	(84.406)	(57.950)
Inverse Distance between i and i' × Phone Service in the Village of i' × Post ACCI	-119.823***	-141.057***	-152.682	161.632
	(46.327)	(49.001)	(107.831)	(382.763)
Mean Baseline Inefficiency	29.625	-13.987	62.617	98.165
(SD)	(208.816)	(112.529)	(248.972)	(313.016)
Observations	60724	29085	26670	1312
R^2	0.243	0.523	0.423	0.731

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i' level are in parentheses. The dependent variable for all regressions is the Inefficiency of Agricultural Yield for i. Phone Service in the Village of i' dummy measures whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i' = $\frac{1}{1+Distance}$ between i and i' captures the inverse of geographic distance between households i and i' measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include time-varying controls, pair fixed effects, and the interaction of the division of household i with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the total number of plots owned by i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i's community reported having phone service in the year interacted with the Post ACCI dummy. Mean Baseline Inefficiency represents the average inefficiency of all plots calculated in the baseline year (2011) using a total of 12901 observations (6058 from Boro, 5762 from Aman, and 1081 from Aus season).

Table B.6: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Input Use on Plot-level Usage of Other Inputs

	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	rerunzer Use	Manure Use	resucide Use	Cost of Machine	Seeds	Cost or Labor	Family Labor	Hired Labor
Phone Service in the Village	43.547* (22.381)	-8.977 (155.354)	57.749 (180.487)	-6.451 (280.558)	803.216*** (288.203)	3856.736*** (1185.014)	46.802 (36.231)	124.407*** (32.985)
Phone Service in the Village \times Post ACCI	-16.291 (17.411)	-77.934 (162.684)	380.081** (171.496)	-194.848 (237.545)	-254.891 (259.232)	-1641.702 (1078.967)	-130.567*** (26.046)	-36.402 (23.333)
Used Rainfed Farming	-36.071*** (11.223)	-81.624 (91.418)	-140.951* (77.170)	42.505 (129.881)	-179.767 (143.412)	-494.567 (586.830)	-31.699** (14.601)	-25.283 (15.732)
Used Tractor	-24.559* (13.474)	398.817** (160.445)	9.501 (121.517)	30.628 (243.224)	135.675 (268.549)	954.827 (908.562)	7.039 (35.323)	11.930 (25.485)
Used Rainfed Farming \times Phone Service in the Village	-60.970*** (13.736)	-10.203 (130.563)	-182.686* (108.858)	-486.640** (209.162)	-27.277 (199.981)	-950.914 (739.682)	-56.042** (23.585)	-35.502* (19.594)
Used Tractor $ imes$ Phone Service in the Village	44.127** (21.828)	7.137 (268.238)	280.457 (253.335)	1182.682*** (395.814)	-527.334 (413.406)	1272.350 (1573.772)	-95.265** (48.274)	23.766 (42.940)
Used Rainfed Farming \times Post ACCI	2.062 (14.188)	303.336** (128.041)	-287.783** (135.234)	-887.387*** (225.110)	-235.444 (211.487)	-763.301 (922.012)	3.402 (20.962)	19.760 (20.076)
Used Tractor \times Post ACCI	6.992 (20.465)	-337.445 (299.071)	323.397 (256.035)	588.253 (437.837)	-449.932 (431.043)	-1512.261 (1719.601)	-43.055 (39.099)	-48.543 (47.313)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI	37.924* (21.138)	34.157 (202.103)	355.477* (181.330)	464.503 (317.583)	195.941 (328.769)	519.026 (1179.358)	96.034*** (33.553)	28.395 (25.688)
Used Tractor \times Phone Service in the Village \times Post ACCI	-72.066* (40.901)	324.259 (484.019)	-798.231* (413.868)	-600.474 (775.285)	1589.203** (702.558)	766.087 (2776.455)	134.056* (71.333)	-2.404 (68.690)
Mean Baseline Outcome (SD)	364.695 (237.595)	1019.461 (2532.455)	1405.986 (1809.46)	4933.866 (3128.249)	5126.187 (4771.416)	14364.99 (20649.26)	457.979 (543.823)	467.584 (664.411)
Observations	20629	20629	20629	20629	27722	20629	20629	20629
\mathbb{R}^2	0.427	0.402	0.507	0.380	0.454	0.474	0.464	0.404

Notes: *p<0.10, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. All dependent variables are in per-hectare terms. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table B.7: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Input Use on Household-level Extension Activities

	(1)	(2)	(3)	(4)	(5)
	Extension Access	Extension Agent	Reached Out to	Extension Agent	Extension Seeking
	Dummy	Visited	Extension Services	Advice Index	Advice Index
Phone Service in the Village	-0.013	0.018	0.018	0.034	0.032
	(0.056)	(0.044)	(0.033)	(0.032)	(0.025)
Phone Service in the Village \times Post ACCI	0.034	-0.023	-0.041	0.016	-0.032*
	(0.038)	(0.037)	(0.030)	(0.026)	(0.018)
Used Rainfed Farming	0.005	-0.002	-0.000	0.006	-0.007
	(0.013)	(0.011)	(0.012)	(0.008)	(0.008)
Used Tractor	-0.060***	0.007	-0.013	-0.000	0.002
	(0.022)	(0.021)	(0.022)	(0.015)	(0.015)
Used Rainfed Farming \times Phone Service in the Village	-0.027	-0.012	-0.015	-0.008	0.003
	(0.020)	(0.018)	(0.016)	(0.013)	(0.010)
Used Tractor \times Phone Service in the Village	0.050	0.012	-0.001	-0.000	-0.012
	(0.039)	(0.047)	(0.030)	(0.032)	(0.019)
Used Rainfed Farming × Post ACCI	-0.038	0.016	-0.015	0.009	0.004
	(0.027)	(0.029)	(0.024)	(0.020)	(0.015)
Used Tractor \times Post ACCI	0.020	-0.019	0.077	0.030	0.029
	(0.052)	(0.070)	(0.058)	(0.053)	(0.042)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI	0.123***	0.018	0.064*	0.013	0.006
	(0.041)	(0.040)	(0.034)	(0.031)	(0.021)
Used Tractor \times Phone Service in the Village \times Post ACCI	-0.047	-0.028	-0.009	-0.074	0.038
	(0.087)	(0.096)	(0.081)	(0.070)	(0.059)
Mean Baseline Outcome	0.256	0.117	0.074	0.074	0.037
(SD)	(0.437)	(0.321)	(0.261)	(0.230)	(0.157)
Observations	27723	27689	27689	27723	27723
R^2	0.541	0.534	0.555	0.544	0.559

Notes: *p<0.10, **p p<0.05, ***p p<0.01. Robust standard errors clustered at the household level are in parentheses. Dependent variables in columns (1)-(3) represent dummies, whereas the dependent variables in columns (4)-(5) are indices that take values between 0 and 1. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used trainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table B.8: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Geographic Network Centrality on Plot-level Usage of Other Inputs

	(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)
	Fertilizer	Manure	Pesticide	Cost of	Cost of	Cost of	Hours of	Hours of
	ose	Ose	Ose	Machine	Seeds	Labor	ramny Labor	nirea Labor
Phone Service in the Village	-9.848	-837.797** (417.388)	-236.470	124.111 (784.768)	2170.503**	1989.598 (4694.660)	-12.997	61.115
Phone Service in the Village $ imes$ Post ACCI	-9.430 (48.162)	188.332 (502.040)	370.718 (420.349)	255.773 (784.843)	1512.157** (680.294)	-8108.527*** (2886.471)	-150.266** (68.103)	-128.891** (62.995)
Inverse Betweenness Centrality $ imes$ Phone Service in the Village	43.809 (59.926)	978.212** (471.208)	295.124 (590.164)	-245.636 (867.180)	-1506.220 (1124.377)	2052.785 (5096.286)	39.539 (147.155)	65.795 (131.586)
Inverse Betweenness Centrality \times Post ACCI	-6.049 (28.845)	266.297 (280.682)	251.627 (286.113)	71.668 (547.661)	599.395 (443.480)	-7656.718*** (2074.349)	-63.219 (44.196)	-170.234*** (43.984)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-1.276 (50.801)	-281.960 (549.451)	6.073 (445.008)	-456.541 (846.425)	-1868.282** (774.557)	8195.154** (3202.812)	63.475 (75.690)	128.385* (69.780)
Mean Baseline Outcome (SD)	364.695 (237.595)	1019.461 (2532.455)	1405.986 (1809.46)	4933.866 (3128.249)	5126.187 (4771.416)	14364.99 (20649.26)	457.979 (543.823)	467.584 (664.411)
Observations	20437	20437	20437	20437	27744	20437	20437	20437
R^2	0.421	0.400	0.505	0.384	0.450	0.473	0.456	0.402

Inverse Betweenness Centrality = 1+Betweenness Centrality 2 at the lousehold at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). Notes: * p<0.10, ** p<0.05, *** p<0.00. Robust standard errors clustered at the household level are in parentheses. All dependent variables are in per-hectare terms. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention.

Table B.9: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Dyadic Geographic Distances on Household-level Usage of Other Inputs

	(1) Fertilizer Use	(2) Manure Use	(3) Pesticide Use	(4) Cost of Machine	(5) Cost of Seeds	(6) Cost of Labor	(7) Hours of Family Labor	(8) Hours of Hired Labor
Phone Service in the Village of i'	-131.630* (79.097)	-120.719 (561.571)	-1954.914*** (629.847)	-1249.654 (858.945)	-4702.866*** (1127.299)	5705.353* (2964.037)	44.781 (71.718)	163.528** (72.950)
Phone Service in the Village of $i' \times \text{Post ACCI}$	3.010 (35.437)	-66.467 (213.180)	896.526*** (215.787)	424.581 (390.342)	939.336*** (314.656)	96.274 (1227.115)	80.937** (38.736)	-13.253 (27.312)
Inverse Distance between i and $i' \times \mathrm{Phone}$ Service in the Village of i'	322.911* (177.700)	1537.269* (924.152)	4999.876*** (1747.417)	-811.161 (1017.570)	7076.539*** (2442.689)	-497.415 (6358.196)	-127.367 (228.589)	-186.116 (167.093)
Inverse Distance between i and $i' imes ext{Post ACCI}$	-26.559 (62.598)	110.937 (319.953)	24.001 (347.603)	-696.752 (856.958)	45.398 (572.378)	-4868.567*** (1724.110)	135.105 (84.465)	-52.408 (37.950)
Inverse Distance between i and $i' \times \text{Phone Service}$ in the Village of $i' \times \text{Post ACCI}$	-58.452 (96.162)	-738.580 (511.467)	-1559.783*** (517.170)	1145.777 (1038.316)	-557.484 (845.857)	4635.532 (3311.093)	-170.227 (113.166)	51.939 (69.335)
Mean Baseline Outcome (SD)	364.695 (237.595)	1019.461 (2532.455)	1405.986 (1809.46)	4933.866 (3128.249)	5126.187 (4771.416)	14364.99 (20649.26)	457.979 (543.823)	467.584 (664.411)
Observations	38723	38723	38723	38723	38723	38723	38723 38723	
\mathbb{R}^2	0.506	0.503	0.653	0.563	0.616	0.721	0.665	0.718

Inverse Distance between i and $i' = \frac{1}{1 + Distance} \frac{1}{bind in iteration}$ and the inverse of geographic distance between households i and i' measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects, and the interaction of the division of the division of the order of the vertice of the vertice of the vertice of plots owned by i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i so validage as reflected by the minimum and maximum temperature of the year (in $^{\circ}$ C) and average yearly rainfall (in mm), and $^{\circ}$ Phone Service in the Village of i dummy measuring whether i's community reported having phone service in measures whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the cumminity of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the cumminity of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the community of household in the Accident part of t Notes:* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i' level are in parentheses. All dependent variables are in per-hectare terms. Phone Service in the Village of i' dummy the year interacted with the Post ACCI dummy.

Table B.10: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Geographic Network Centrality on Household-level Extension Activities

	(1)	(2)	(3)	(4)	(5)
	Extension Access	Extension Agent	Reached Out to	Extension Agent	Extension Seeking
	Dummy	Visited	Extension Services	Advice Index	Advice Index
Phone Service in the Village	-0.105	0.005	-0.134***	-0.020	-0.057**
	(0.125)	(0.069)	(0.046)	(0.043)	(0.025)
Phone Service in the Village \times Post ACCI	0.273***	0.118	0.067	0.142**	0.027
	(0.095)	(0.112)	(0.086)	(0.068)	(0.047)
Inverse Betweenness Centrality \times Phone Service in the Village	0.104	0.011	0.176***	0.061	0.105**
	(0.146)	(0.096)	(0.066)	(0.058)	(0.047)
Inverse Betweenness Centrality \times Post ACCI	0.145**	0.083	0.025	0.103**	0.028
	(0.066)	(0.092)	(0.069)	(0.051)	(0.040)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-0.244**	-0.167	-0.115	-0.158**	-0.069
	(0.105)	(0.120)	(0.093)	(0.073)	(0.051)
Mean Baseline Outcome	0.256	0.117	0.074	0.074	0.037
(SD)	(0.437)	(0.321)	(0.261)	(0.230)	(0.157)
Observations	27745	27714	27714	27745	27745
R^2	0.541	0.533	0.552	0.542	0.555

Notes: *p<0.10, **p<0.05, ***p<0.01. Robust standard errors clustered at the household level are in parentheses. Dependent variables in columns (1)-(3) represent dummines, whereas the dependent variables in columns (4)-(5) are indices that take values between 0 and 1. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 11-Fettercanness Centrality = 11-Fettercanness Centrality captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the effects. All regressions used data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household wors the plot, a dummy capturing whether the household wors the plot, a dummy capturing whether the household wors the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot, a dummy capturing whether the household was the plot of the plot and the plot of the

Table B.11: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Dyadic Geographic Distances on Household-level Extension Activities

	(1)	(2)	(3)	(4)	(5)
	Extension Access	Extension Agent	Reached Out to	Extension Agent	Extension Seeking
	Dummy	Visited	Extension Services	Advice Index	Advice Index
Phone Service in the Village of i'	-0.044	0.148	0.150	0.025	0.123
	(0.108)	(0.120)	(0.179)	(0.144)	(0.119)
Phone Service in the Village of $i' \times Post ACCI$	0.023	-0.013	-0.068	-0.025	-0.014
	(0.042)	(0.041)	(0.044)	(0.027)	(0.023)
Inverse Distance between i and $i' \times \text{Phone Service}$ in the Village of i'	0.274	-0.193	-0.095	-0.182	-0.093
	(0.208)	(0.176)	(0.366)	(0.229)	(0.232)
Inverse Distance between i and $i' \times Post$ ACCI	0.153**	0.010	0.199**	-0.012	0.145**
	(0.060)	(0.065)	(0.097)	(0.038)	(0.072)
Inverse Distance between i and $i' \times \text{Phone Service}$ in the Village of $i' \times \text{Post ACCI}$	-0.202**	-0.089	-0.236*	-0.022	-0.180**
	(0.094)	(0.102)	(0.122)	(0.068)	(0.085)
Mean Baseline Outcome	0.256	0.117	0.074	0.074	0.037
(SD)	(0.437)	(0.321)	(0.261)	(0.230)	(0.157)
Observations	38726	38548	38548	38726	38726
R^2	0.586	0.616	0.613	0.638	0.603

C Additional Robustness Checks

Table C.1: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using plot fixed-effects instead of household fixed-effects)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-1.107 (10.414)	-180.271 (110.602)	-2.772 (8.707)	-149.606 (107.295)
Phone Service in the Village \times Post ACCI	-15.713** (7.542)	93.737 (109.443)	2.621 (4.964)	74.593 (92.521)
Used Rainfed Farming			-0.454 (8.339)	-148.610* (83.749)
Used Tractor			223.787*** (17.716)	-50.612 (117.036)
Used Rainfed Farming \times Phone Service in the Village			23.654** (11.333)	-199.533** (94.980)
Used Tractor \times Phone Service in the Village			54.787 (43.633)	-60.480 (199.343)
Used Rainfed Farming \times Post ACCI			-2.998 (10.866)	134.051 (100.239)
Used Tractor \times Post ACCI			-52.812 (32.625)	241.116 (187.228)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-42.718*** (12.125)	131.552 (128.766)
Used Tractor \times Phone Service in the Village \times Post ACCI			-85.417 (57.015)	75.157 (354.660)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	23520	24341	23520	23981
R^2	0.492	0.706	0.532	0.707

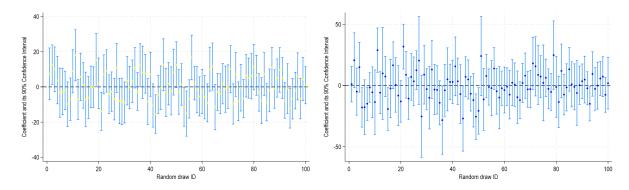
Notes: *p<0.10, **p<0.05, ****p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, plot, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.2: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using the balanced panel of households)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	6.876 (11.642)	-281.032** (133.078)	8.130 (9.367)	-282.477** (115.513)
Phone Service in the Village \times Post ACCI	-16.035** (7.644)	90.827 (111.925)	1.265 (4.883)	72.925 (94.388)
Used Rainfed Farming			-0.762 (9.581)	-156.126 (99.376)
Used Tractor			226.606*** (18.996)	-61.350 (126.123)
Used Rainfed Farming \times Phone Service in the Village			21.490 (13.151)	-168.309 (112.562)
Used Tractor \times Phone Service in the Village			48.814 (49.013)	-27.378 (220.215)
Used Rainfed Farming \times Post ACCI			0.757 (11.785)	94.780 (106.637)
Used Tractor \times Post ACCI			-56.228* (33.609)	233.830 (191.943)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-42.813*** (13.074)	128.107 (135.183)
Used Tractor \times Phone Service in the Village \times Post ACCI			-84.254 (61.862)	85.637 (372.900)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	19191	19853	19191	19578
R^2	0.476	0.696	0.524	0.697

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.3: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (excluding observations from round 1)


	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-21.688 (31.918)	-393.063* (219.681)	-22.906 (18.483)	-288.744 (291.862)
Phone Service in the Village \times Post ACCI	-14.971* (8.791)	145.814 (124.376)	1.365 (4.507)	80.457 (91.702)
Used Rainfed Farming			1.447 (13.676)	-252.161* (129.203)
Used Tractor			191.687*** (14.437)	143.623 (162.345)
Used Rainfed Farming \times Phone Service in the Village			20.338 (19.323)	-187.450 (145.435)
Used Tractor \times Phone Service in the Village			89.992 (62.049)	-515.273* (304.394)
Used Rainfed Farming \times Post ACCI			2.395 (11.687)	50.367 (121.925)
Used Tractor \times Post ACCI			-18.486 (15.607)	64.254 (177.703)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-37.391** (14.934)	171.553 (146.367)
Used Tractor \times Phone Service in the Village \times Post ACCI			-85.952 (60.006)	464.007 (364.352)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	16016	16375	16016	16375
R^2	0.498	0.657	0.551	0.660

Notes: * p<0.10, ** p<0.05, **** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls include the dummy capturing whether the household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.4: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using fertilizer usage, instead of tractor usage, as an indicator of high-yielding input)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	13.116 (11.636)	-164.784 (101.555)	-22.603* (12.881)	73.867 (109.574)
Phone Service in the Village \times Post ACCI	-17.904** (8.685)	110.545 (99.436)	20.722* (11.311)	-23.634 (113.221)
Used Rainfed Farming			-21.431** (10.477)	-100.772 (89.011)
Above Median Fertilizer Usage			157.367*** (6.122)	552.316*** (65.961)
Used Rainfed Farming \times Phone Service in the Village			44.144*** (14.786)	-297.652*** (102.482)
Above Median Fertilizer Usage \times Phone Service in the Village			25.141** (12.528)	-224.811*** (85.654)
Used Rainfed Farming \times Post ACCI			14.018 (11.093)	27.944 (103.688)
Above Median Fertilizer Usage \times Post ACCI			4.985 (9.315)	-209.446** (91.655)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-60.155*** (16.276)	238.759* (138.106)
Above Median Fertilizer Usage \times Phone Service in the Village \times Post ACCI			-35.021** (14.883)	139.141 (125.604)
Mean Baseline Outcome (SD)	91.717 (271.615)	3582.026 (1734.7)	91.717 (271.615)	3582.026 (1734.7)
Observations	20254	27991	20254	20629
R^2	0.332	0.631	0.448	0.644

Notes: * p<0.05, *** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Above Median Fertilizer Usage dummies capture whether the household used rainfed farming and above the median level of fertilizer in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

(a) By shuffled Inverse Betweenness Centrality

(b) By shuffled Inverse Distance

Figure C.1: Effect of the Agricultural Call Center Intervention by randomly shuffled Centrality and Distance measures

Notes: The reported triple-difference coefficients for the specifications (4) and (5), with *Inverse Betweenness Centrality* and *Inverse Distance between i and i'* being captured by shuffled values of the same variables at the baseline. Each draw represents a random shuffling of the corresponding variable from their respective distributions for the baseline. *Phone Service in the Village* dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention.

Table C.5: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (controlling for other input usage)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-8.486 (15.121)	-140.377 (104.101)	-11.204 (9.668)	-69.685 (102.927)
Phone Service in the Village \times Post ACCI	-18.436** (7.894)	122.106 (104.237)	-0.204 (4.311)	87.948 (80.944)
Used Rainfed Farming			0.127 (8.800)	-163.045* (89.411)
Used Tractor			216.930*** (10.466)	4.475 (88.419)
Used Rainfed Farming \times Phone Service in the Village			25.202* (13.391)	-195.873* (100.800)
Used Tractor \times Phone Service in the Village			35.782 (34.471)	-36.531 (161.531)
Used Rainfed Farming \times Post ACCI			-4.162 (9.897)	106.126 (96.935)
Used Tractor \times Post ACCI			-39.108** (15.362)	175.589 (138.445)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-47.315*** (13.161)	151.544 (121.893)
Used Tractor \times Phone Service in the Village \times Post ACCI			-47.678 (40.772)	65.131 (262.413)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	20254	20629	20254	20629
R^2	0.417	0.645	0.484	0.647

Notes: *p<0.10, **p<0.05, ****p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). All regressions also control for fertilizer use (kilograms per hectare), manure use (taka per hectare), pesticide use (taka per hectare), cost of the machine (taka per hectare), cost of seeds (taka per hectare), and hired labor hours (per hectare).

Table C.6: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using simulation-based potential yield at the 90th percentile)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village	-6.330 (12.978)	-164.784 (101.555)	-9.492 (8.801)	-111.050 (96.423)
Phone Service in the Village \times Post ACCI	-17.658** (7.718)	110.545 (99.436)	-2.178 (4.599)	87.096 (80.204)
Used Rainfed Farming			-0.660 (8.227)	-161.954** (73.481)
Used Tractor			262.588*** (13.649)	-5.803 (70.683)
Used Rainfed Farming \times Phone Service in the Village			27.675** (12.176)	-222.761*** (85.864)
Used Tractor \times Phone Service in the Village			18.670 (34.279)	43.134 (131.907)
Used Rainfed Farming \times Post ACCI			-1.718 (10.539)	87.067 (92.611)
Used Tractor \times Post ACCI			-72.464*** (25.654)	257.615* (147.503)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-49.476*** (13.877)	163.653 (120.209)
Used Tractor \times Phone Service in the Village \times Post ACCI			-17.249 (44.461)	-82.591 (252.435)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	27298	27991	27298	27723
R^2	0.399	0.631	0.468	0.633

Notes: *p<0.10, ***p<0.05, ****p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, plot, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.7: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (fixing the *Phone Service in the Village* at the baseline)

	(1) Inefficiency	(2) Actual Yield	(3) Inefficiency	(4) Actual Yield
Phone Service in the Village \times Post ACCI	-13.052* (6.703)	95.124 (98.833)	4.017 (4.187)	47.984 (81.080)
Used Rainfed Farming			-0.736 (9.242)	-156.781* (95.095)
Used Tractor			214.205*** (11.432)	-4.381 (95.258)
Used Rainfed Farming \times Phone Service in the Village			31.015** (13.654)	-317.568*** (106.130)
Used Tractor \times Phone Service in the Village			36.440 (30.402)	6.699 (153.942)
Used Rainfed Farming × Post ACCI			-1.198 (10.070)	56.643 (100.624)
Used Tractor \times Post ACCI			-35.909** (15.826)	169.468 (144.333)
Used Rainfed Farming \times Phone Service in the Village \times Post ACCI			-51.810*** (13.228)	239.646* (124.537)
Used Tractor \times Phone Service in the Village \times Post ACCI			-50.456 (37.657)	65.841 (266.225)
Mean Baseline Outcome (SD)	29.625 (208.816)	3582.026 (1734.7)	29.625 (208.816)	3582.026 (1734.7)
Observations	27283	27976	20246	20621
	0.399	0.630	0.482	0.637

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.8: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes (using plot fixed-effects instead of household fixed-effects)

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village	-29.307	-97.127	-0.148*	-0.097
	(23.591)	(297.499)	(0.082)	(0.078)
Phone Service in the Village \times Post ACCI	40.603	-332.128	0.024	-0.020
	(27.909)	(222.526)	(0.055)	(0.058)
Inverse Betweenness Centrality \times Phone Service in the Village	33.777	-98.676	0.172*	0.086
	(28.416)	(338.923)	(0.088)	(0.086)
Inverse Betweenness Centrality \times Post ACCI	40.071	-417.238**	0.016	-0.048
	(26.975)	(170.934)	(0.042)	(0.042)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-67.122**	508.025**	0.002	-0.010
	(30.948)	(252.068)	(0.064)	(0.064)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	23334	24141	24141	23791
R^2	0.492	0.706	0.701	0.746

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, plot, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.9: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes (using the balanced panel of households)

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village	-28.483	-52.351	-0.099	-0.095
	(31.260)	(286.219)	(0.100)	(0.108)
Phone Service in the Village \times Post ACCI	33.327	-440.795**	-0.006	-0.032
	(20.271)	(206.694)	(0.051)	(0.055)
Inverse Betweenness Centrality \times Phone Service in the Village	34.050	-228.029	0.118	0.096
	(35.575)	(324.254)	(0.108)	(0.117)
Inverse Betweenness Centrality \times Post ACCI	28.267	-462.630***	-0.000	-0.069
	(17.806)	(154.146)	(0.037)	(0.044)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-60.301***	666.110***	0.031	0.014
	(23.106)	(232.812)	(0.058)	(0.060)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	21466	22021	22021	21807
R^2	0.338	0.615	0.655	0.544

Notes: * p<0.10, ** p<0.05, **** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.10: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes (excluding observations from round 1)

	(1)	(2)	(3)	(4)
	Inefficiency	Actual Yield	Used Rainfed	Used
			Farming	Tractor
Phone Service in the Village	-235.256*	868.769	0.055	-0.708*
C	(142.104)	(569.248)	(0.064)	(0.385)
Phone Service in the Village \times Post ACCI	27.811	-511.326**	-0.052	-0.011
Ü	(23.415)	(217.478)	(0.061)	(0.064)
Inverse Betweenness Centrality × Phone Service in the Village	243.206	-1435.240**	-0.071	0.729*
,	(148.948)	(691.347)	(0.106)	(0.405)
Inverse Betweenness Centrality \times Post ACCI	24.983	-657.915***	-0.017	-0.071
•	(19.498)	(165.015)	(0.043)	(0.051)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-51.350*	786.412***	0.059	-0.010
,	(27.349)	(245.779)	(0.069)	(0.070)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	15852	16204	16204	16204
R^2	0.498	0.658	0.692	0.724

Notes: *p<0.10, **p<0.05, ****p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.11: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural Outcomes (excluding observations from round 1)

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village of <i>i'</i>	-51.837	-2575.994**	0.158*	-0.076
	(51.059)	(1182.204)	(0.087)	(0.092)
Phone Service in the Village of $i' \times Post ACCI$	63.271*	-736.776	-0.045*	-0.016
	(37.363)	(586.391)	(0.024)	(0.025)
Inverse Distance between i and i' × Phone Service in the Village of i'	103.320	3453.561*	-0.379*	0.162
	(79.955)	(1873.143)	(0.222)	(0.222)
Inverse Distance between i and $i' \times \text{Post ACCI}$	148.393**	-4266.983**	-0.167***	-0.012
	(62.835)	(1664.085)	(0.047)	(0.045)
Inverse Distance between i and i' × Phone Service in the Village of i' × Post ACCI	-184.272**	5059.340**	0.157**	0.069
	(88.375)	(2072.056)	(0.072)	(0.065)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	38726	38726	38726	38726
R^2	0.362	0.902	0.687	0.691

Notes: *p<0.10, **p<0.05, ***p >0.01. Robust standard errors multi-way clustered at the household i and household i' level are in parentheses. Phone Service in the Village of i' dummy measures whether the community of household i' reported having phone service in that year and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and $i' = \frac{1}{1+Distance between i and <math>i'$ captures the inverse of geographic distance between households i and i' measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, pair fixed effects, and the interaction of the division of household i with year fixed-effects. Time-varying controls include the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i's community reported having phone service in the year interacted with the Post ACCI dummy.

Table C.12: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes (with respect to placebo intervention between 2011 and 2015)

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village	-46.395*	-228.411	-0.088	-0.069
	(26.834)	(335.691)	(0.090)	(0.072)
Phone Service in the Village \times Post ACCI	-3.005	330.303	0.076	-0.018
	(22.678)	(222.396)	(0.055)	(0.037)
Inverse Betweenness Centrality \times Phone Service in the Village	50.387	136.747	0.012	0.033
	(33.643)	(389.413)	(0.099)	(0.086)
Inverse Betweenness Centrality \times Post ACCI	-22.797	516.034***	0.054*	0.015
	(19.102)	(191.100)	(0.032)	(0.027)
Inverse Betweenness Centrality \times Phone Service in the Village \times Post ACCI	-3.135	-377.318	-0.038	0.022
	(26.096)	(246.921)	(0.060)	(0.042)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	19836	20445	20445	20183
R^2	0.442	0.689	0.716	0.605

Notes: * p<0.10, *** p<0.05, **** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures whether the household's community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = $\frac{1}{1+Betweenness Centrality}$ captures the inverse of geographic betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household's village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.13: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural Outcomes (with respect to placebo intervention between 2011 and 2015)

	(1) Inefficiency	(2) Actual Yield	(3) Used Rainfed Farming	(4) Used Tractor
Phone Service in the Village of <i>i'</i>	-44.988**	-336.568	0.012	-0.094**
	(20.069)	(782.428)	(0.037)	(0.041)
Phone Service in the Village of $i' \times Post ACCI$	-52.104	473.667	0.035	-0.023
	(43.278)	(608.213)	(0.022)	(0.023)
Inverse Distance between i and $i' \times Phone$ Service in the Village of i'	23.838	1830.899	-0.101	0.024
	(80.126)	(3189.722)	(0.117)	(0.148)
Inverse Distance between i and $i' \times Post$ ACCI	-125.722	724.803	0.020	-0.022
	(89.192)	(997.452)	(0.039)	(0.029)
Inverse Distance between i and $i' \times \text{Phone Service}$ in the Village of $i' \times \text{Post ACCI}$	173.922	-1711.449	-0.089	0.048
	(135.452)	(1679.774)	(0.064)	(0.053)
Mean Baseline Outcome	29.625	3582.026	0.321	0.071
(SD)	(208.816)	(1734.7)	(0.467)	(0.257)
Observations	40284	40284	40284	40212
R^2	0.313	0.878	0.715	0.700

Notes: * p<0.10, ** p<0.05, **** p<0.01. Robust standard errors multi-way clustered at the household *i* and household *i'* level are in parentheses. *Phone Service in the Village of i'* dummy measures whether the community of household *i'* reported having phone service in that year and *Post ACCI* is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. *Inverse Distance between i and i'* = 1/(1-1)-istance between i and *i'* aptures the inverse of geographic distance between households *i* and *i'* measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include season-fixed effects, time-varying controls, pair fixed effects, and the interaction of the division of household *i* with year fixed-effects. Time-varying controls include the total number of plots operated by them, whether *i* has an agricultural input subsidy card, the weather of household *i'* s village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm), and *Phone Service in the Village of i* dummy measuring whether *i'* s community reported having phone service in the year interacted with the Post ACCI dummy.